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ABSTRACT
The use of video surveillance in public spaces—both by govern-
ment agencies and by private citizens—has attracted considerable
attention in recent years, particularly in light of rapid advances in
face-recognition technology. But it has been difficult to systemati-
cally measure the prevalence and placement of cameras, hampering
efforts to assess the implications of surveillance on privacy and
public safety. Here, we combine computer vision, human verifi-
cation, and statistical analysis to estimate the spatial distribution
of surveillance cameras. Specifically, we build a camera detection
model and apply it to 1.6 million street view images sampled from
10 large U.S. cities and 6 other major cities around the world, with
positive model detections verified by human experts. After adjust-
ing for the estimated recall of our model, and accounting for the
spatial coverage of our sampled images, we are able to estimate the
density of surveillance cameras visible from the road. Across the 16
cities we consider, the estimated number of surveillance cameras
per linear kilometer ranges from 0.2 (in Los Angeles) to 0.9 (in
Seoul). In a detailed analysis of the 10 U.S. cities, we find that cam-
eras are concentrated in commercial, industrial, and mixed zones,
and in neighborhoods with higher shares of non-white residents—a
pattern that persists even after adjusting for land use. These results
help inform ongoing discussions on the use of surveillance tech-
nology, including its potential disparate impacts on communities
of color.

CCS CONCEPTS
• Computing methodologies → Computer vision; • Applied
computing → Law, social and behavioral sciences.
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1 INTRODUCTION
Surveillance cameras, also known as closed-circuit television (CCTV)
systems, have proliferated in the last several decades as the costs to
record and store video have fallen dramatically. As of 2016, there
were an estimated 350 million surveillance cameras worldwide [25].
The United States, with an estimated 50 million CCTV cameras
installed, is believed to have the highest per capita number of
surveillance cameras (15.3 CCTV cameras per 100 people) in the
world [31].

Past work has found that surveillance cameras may play an im-
portant role in crime prevention and investigation, but there is also
growing concern about the dangers cameras pose to privacy and
equity. Further, recent advances in facial recognition technology
significantly amplify both the potential costs and the potential ben-
efits of widespread surveillance, as it is now possible to identify and
track specific individuals across space and time. While these tech-
nical advances promise to aid law enforcement efforts, they may
also unjustly concentrate policing on more heavily monitored com-
munities. This surveillance may also hinder longstanding freedoms
of speech and association, as it becomes easier to identify those
participating in public gatherings, potentially dissuading dissent.

Despite the wide-ranging implications of surveillance cameras
on public safety, police enforcement, and democratic governance,
relatively little is known about the precise number and placement
of cameras, hampering efforts to assess their impacts. Past work
to gauge the prevalence and spatial distribution of surveillance
cameras has either examined aggregate production or shipping
numbers, or relied on public disclosures in select jurisdictions—
approaches that suffer from limitations of scale and scope.

To address these limitations, Turtiainen et al. [39] note that
researchers could, in theory, map surveillance cameras by applying
computer vision algorithms to street view data, which provide
nearly complete visual coverage of many cities. Building on that
insight, here we describe and implement a scalable method for
measuring the distribution of outdoor surveillance cameras across
the United States, and, more generally, across the world. Specifically,
we couple computer vision algorithms with a verification pipeline
by expert human annotators, together with statistical adjustment,
to analyze a large-scale corpus of street view images. In this manner,
we leverage the proliferation of cameras and image data themselves
to quantify the prevalence of surveillance technology.

To carry out this analysis, we use the public repository of images
collected as part of Google’s Street View service, launched in 2007.
Since its inception, millions of 360-degree panoramas have been
collected by cameras mounted on the roof rack of Google Street
View cars, covering more than 10 million miles across 83 coun-
tries [33]. The rich archive of historical street view images provides
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opportunities to understand the evolution of the built environment,
particularly the adoption of surveillance cameras on a global scale.
However, it is still extremely challenging—if not impossible—for
humans to eyeball millions of images and spot cameras from the
diverse street view context: a camera usually consists of 30–50
pixels out of over 400,000 pixels in a standard 640 × 640 street view
image.

To scour this collection of images, we train and apply a computer
vision algorithm to first filter street view data to those candidate
images likely to contain a surveillance camera. We specifically start
with a random selection of 1.6 million street view images from 10
large U.S. cities and 6 other major cities, which contains approxi-
mately 6,000 positivemodel detections. This curated set of candidate
images is then examined by human experts for verification. To go
from verified camera detections in our sample to city-wide esti-
mates, we further estimate both the recall of our model (which we
find is 0.63), and the proportion of the city covered by our sample.
This latter quantity is computed based on the recorded camera
position and angle, coupled with high-precision data on the road
network and building footprints.

We find substantial variation in the density of visible surveil-
lance cameras across the 16 cities we consider, ranging from 0.07
cameras per linear kilometer along the road network in Seattle to
0.95 cameras per kilometer in Seoul. Examining the 10 U.S. cities in
greater detail, we find that surveillance cameras are concentrated
in commercial, industrial, and mixed city zones, and also in areas
with higher shares of non-white residents. This concentration of
cameras in majority-minority neighborhoods persists even after
adjusting for zone, pointing to the potential disparate impacts of
surveillance technology on communities of color.

2 RELATEDWORK
Our work connects to several interrelated strands of research in
computer vision, urban computing, and privacy, which we briefly
summarize below.

2.1 Street View Understanding
Visual scene understanding [14] is one of the most fundamental
and challenging goals in computer vision. In part because of its
potential to support self-driving vehicles, both the industrial and
scientific communities have put considerable effort and investment
into designing and creating labeled street view datasets for train-
ing and evaluating deep learning models, such as CamVid [3], the
KITTI Vision Benchmark Suite [12], Cityscapes [9], and Mapillary
Vistas [27]. Based on these datasets, several studies exploit the
characteristics of urban-scene images and propose object segmen-
tation [8, 23] and change detection [1] algorithms for general street
view understanding.

Related research has focused on detecting specific elements from
street images, including greenery [22], buildings [20], and city in-
frastructure such as utility poles [42]. Of particular relevance to
our work, Neuhold et al. [27] built an image segmentation model
to identify—among other objects—CCTVs in street view data. The
publicly available Neuhold et al. Mapillary Vistas Dataset contains
over 20,000 labeled images but fewer than 100 labeled cameras, lead-
ing to relatively poor performance on the specific task of detecting

cameras. More recently, Turtiainen et al. [39] developed a state-of-
the-art object detection model tailored specifically to CCTVs, based
on nearly 10,000 images of cameras that they collected and labeled.
That dataset, however, has not been publicly released at the time of
writing. As a result, we constructed (and have released) our own
labeled camera dataset and built a camera detection model using
standard computer vision techniques.

2.2 Urban Computing
Urban computing aims to tackle major issues in cities—such as traf-
fic control, public health, and economic development—by modeling
and analyzing urban data. A large body of research has shown that
it is possible to infer socioeconomic information from satellite im-
ages [17, 36], monitor human mobility [41], and identify geo-tagged
social network activities [35]. Recent studies using street view im-
ages have dramatically increased the accuracy of processed data,
as well as the geographic resolution analyzed. By manually scoring
street view images from 2,709 city blocks, Hwang and Sampson [16]
find that gentrification in Chicago from 2007 to 2009 was negatively
associated with the concentration of minority groups. Mooney et al.
[26] labeled the characteristics of 532 intersections in New York
City, such as curb cuts and crosswalks, to assess environmental
contributions to pedestrian injury.

As an alternative to relying on human experts to annotate street
view images, modern computer vision algorithms have a much
higher throughput with close to zero cost, enabling researchers to
scale to multiple cities. For example, Gebru et al. [11] enumerated 22
million automobiles (8% of all vehicles in the U.S.) in 50million street
view images to accurately estimate local income, race, education,
and voting patterns. In our work, we draw on the merits of both
approaches, combining high-recall computer vision algorithmswith
high-precision human verification in a unified estimation pipeline.

2.3 Surveillance and Privacy
While past work has found that surveillance cameras play an impor-
tant role in crime investigation [21] and deterrence [40], cameras
also pose significant challenges to privacy. Legal scholars have long
considered the ramifications of cameras on First Amendment free-
doms and the constitutional right to privacy [34]. More recently,
scholars have been concerned with the role of surveillance cameras
in predictive policing [19], in enabling the adverse effects of facial
recognition and computer vision [4, 5, 28, 37], and with the threat
of surveillance hacking [13, 32]. These concerns have led to bans
on facial-recognition technology by law enforcement in San Fran-
cisco, Boston, and Portland [10], as well as the drafting of federal
legislation [15].

Despite these concerns, there has been limited success in iden-
tifying the number and geospatial distribution of cameras. The
Electronic Frontier Foundation (EFF) recently acquired the loca-
tions of cameras accessible by prosecutors in San Francisco [24].
Other private-market researchers have estimated the prevalence of
installed cameras at a national level through unit shipments [18].
However, neither of these approaches are able to estimate the preva-
lence and specific locations of public and private cameras at scale,
hindering downstream analysis on the impacts of surveillance.



Figure 1: Camera estimation workflow. We take a three-step approach to estimating the prevalence and spatial distribution
of surveillance cameras across 16 major cities. First, we create a labelled dataset of street view images to estimate the recall
of our camera-detection algorithm. Next, we run this camera-detection algorithm on a random sample of street images, and
then use human annotators to identify images with actual cameras. Finally, we estimate the proportion of the road network
covered by our random sample of street images.

3 DATA AND METHODS
For 16 major cities, we estimate the total number and spatial distri-
bution of surveillance cameras visible from the street. We specifi-
cally consider the 10 cities with the highest urban density in the
U.S., among those with at least 500,000 residents, and 6 other ma-
jor cities in Asia and Europe. Our statistical estimation procedure
involves three key steps. First, we compile a dataset of street view
images both with and without cameras and label these images with
segmentation masks. We then train a camera segmentation model
on this dataset, and, importantly, estimate the recall of our detection
algorithm on a held-out validation dataset. Second, we run our cam-
era detection algorithm on a random sample of street view images.
All positive camera detections are then reviewed by human experts
to remove false positives. Finally, by combining the geometry of
the camera angle, the road network, and building footprints, we
calculate our sample’s coverage of the road network. These three
steps are outlined in Figure 1. In the following sections, we describe
the data used in our analysis and more fully detail each step in our
estimation pipeline.

3.1 Data
We analyze the 16 cities listed in Table 1. For each city, we obtained
the road network and building footprints from OpenStreetMap [2,
29]. U.S. Census maps were used to restrict the geospatial data
to the city’s administrative borders. All street view images used
for model training and camera detection were accessed through
the Google Static Streetview API.1 We further used San Francisco
camera location data from the EFF [24] to construct training and
evaluation datasets for our model.

1https://developers.google.com/maps/documentation/streetview

City Population Area (sq. km) Road length (km)

Los Angeles 3,793,000 1,213 21,095
New York City 8,175,000 783 16,362
Chicago 2,696,000 589 10,449
Philadelphia 1,526,000 347 6,759
Seattle 609,000 217 5,569
Milwaukee 595,000 248 4,899
Baltimore 621,000 209 3,746
Washington, D.C. 602,000 158 3,262
San Francisco 805,000 121 3,101
Boston 618,000 125 2,589

Tokyo 13,159,000 2,194 46,688
Bangkok 8,305,000 1,569 34,692
London 8,174,000 1,572 28,907
Seoul 9,630,000 605 14,748
Singapore 3,772,000 728 5,794
Paris 2,244,000 106 1,853

Table 1: We estimate the prevalence and location of surveil-
lance cameras in the 10 large U.S. cities and 6 other major
cities around the world. Above we list the population and
land area of these cities, and the estimated length of the road
network within the city bounds, in descending order of road
length.

3.2 Step 1: Model Training and Evaluation
We start by creating training and evaluation datasets for our camera
detection model. For each of the 2,660 geo-tagged cameras in San
Francisco identified by the EFF, we pulled the closest street view
images from 2012–2019 (if there is a scene available within 30
meters). Manually labeling the resulting 13,240 images yielded 861
positive instances containing 977 cameras.We note that many of the
cameras listed in the EFF dataset appear to be indoors or otherwise

https://developers.google.com/maps/documentation/streetview


Figure 2: Examples of surveillance cameras in San Francisco.
Upper left: Dome camera mounted on a traffic pole. Upper
right: Dome camera mounted on the wall of a parking struc-
ture. Lower left: A wall mounted directed camera. Lower
right: Two wall-mounted dome cameras.

are not visible from the street. In Figure 2, we show several labeled
examples.

We frame our camera detection problem as a binary image seg-
mentation problem to maximize learning from a limited number of
samples. We split the positive images by location into 70%/15%/15%
training/validation/test sets, making sure images from the same
site always belong to the same split. We further include all camera
instances from Mapillary Vista into our training dataset. By mixing
with the negative images, we end up with 5,298 images for training,
1,040 for validation, and 1,040 for testing.

For ease, we use off-the-shelf methods to train our computer
vision model (for state-of-the-art camera detection, see Turtiainen
et al. [39]). In particular, our segmentation model follows the archi-
tecture of DeepLab V3+ [6, 7] with an EfficientNet-b3 [38] backbone.
We apply a random horizontal flip and randomly crop the original
image (640 x 640 pixels) to 320 x 320 before feeding it into the model
during training. In the inference phase, we first crop the input im-
age into four patches and then merge the output segmentation
maps back to the original size. The segmentation model’s perfor-
mance is shown in Table 2. To aggregate the pixel level prediction
to the instance level, we first apply a morphological dilation with
a 3x3 kernel to merge detected areas and filter false detections by
size. After validating several combinations of pixel-level probability
thresholds and size filters, we decided to use a probability threshold
of 0.75 and a size threshold of 50 pixels, which yields precision and
recall equal to 0.58 and 0.63, respectively (see Figure 3).

In Figure 4, we present several illustrative failures of our detec-
tionmodel. Themodel is occasionally confused by objects that share
some of the visual features of cameras, such as building structures,
parking meters, and street lamps. In some instances, our model also
merges multiple cameras into one detection. These problems are

Data Split IoUcamera Accuracy F1-score

Validation Set 0.71 0.94 0.90
Test Set 0.69 0.93 0.89

Table 2: Performance of our camera segmentation model in
pixel space.

mitigated by the human verification step, as described in the next
section.

Figure 3: Model precision and recall at camera instance level
as we vary the classification threshold, for different size fil-
ters (in pixels). We decided to use a probability threshold of
0.75 and a size threshold of 50 pixels, which yields precision
and recall equal to 0.58 and 0.63, respectively.

3.3 Step 2: Camera Detection and Verification
For each city, we sampled street view images at 𝑁 = 100, 000
points chosen uniformly at random from the road network.2 For
approximately 3% of the selected points, there was no street view
coverage within 10 meters, in which case we discarded and then
re-sampled the location. Figure 5 shows the spatial distribution of
the sampled points for three example cities: San Francisco, New
York, and Chicago.

For each location, we then selected a 360-degree street view
panorama. For London, Paris, and the 10 American cities, we se-
lected the oldest available image taken between 2015 and 2021; for
the remaining cities, we selected the oldest available image in the
Google Maps corpus, which goes back to 2007. We note that this
sampling strategy is the result of a coding error; our intention was
to select the newest available image at each location. Finally, for
each location sampled, we randomly selected one out of the two
90-degree views with a midpoint perpendicular to the orientation
of the road (see Figure 6). This approach provides the maximum
view of the roadside.
2For reference, there are more than 400,000 points covered with distinct street view
panoramas in San Francisco.



Figure 4: Examples of false positives and other errors from
our camera detection model. Upper left: Building structure.
Upper right: Parking meter. Lower left: Street lamp. Lower
right: Our algorithm incorrectly merged two cameras into
one detection.

We ran our camera detectionmodel on the resulting set of 100,000
images for each of the 16 cities. Annotators received the raw image
and bounding boxes highlighting the predicted cameras, whichwere
automatically generated from themodel segmentation outputs. This
process yielded 6,281 positive images with a total of 6,469 camera
detections, all of which were then verified by a human annotator.

Figure 7 illustrates the pipeline from the raw image to segmenta-
tion and bounding boxes to human verification. In our subsequent
analysis, we only consider these human-verified camera detections.

3.4 Step 3: Road Network Coverage Estimation
The final step in our procedure is to estimate the fraction of the
visible area covered by our randomly sampled images. To estimate
how much of the total length of a city’s road network (𝐷) has been
covered by our sample (𝐷covered), we estimate the average length
of road covered by one street view image (𝑑), which we can then
multiply by the number of images sampled (𝑁 ).

We estimate 𝑑 based on the geometry illustrated in Figure 6.
Each street view image comes with the exact latitude and longitude
of where it was taken. Given an image’s point location 𝑝 , we find
the closest point 𝑝 ′ within the nearby buildings’ footprint, and
denote the distance between 𝑝 ′ and 𝑝 with 𝛿 . As discussed above,
we chose the street view’s heading to be perpendicular to the road
orientation, and restricted it to a 90-degree view. As a result, we
estimate the length of road segment covered by the image to be
𝑑 = 2𝛿 .

We repeat this procedure for each sampled street view image.
We remove the relatively small number of images taken at locations
more than 30 meters from a building—corresponding to 60 meters
of street coverage—since at further distances, cameras become too

small to be reliably detected by either humans or computer vision
algorithms. This results in images that cover about 25–30 meters of
street. For example, the mean road segment covered by an image 𝑑
is 24, 29, and 28 meters in San Francisco, Chicago, and New York
City, respectively, as shown in Figure 9.

Now, we estimate the proportion of a city’s road network covered
by our sample as 𝑐 = (𝑁𝑑)/(2𝐷), where 𝑁 is the total number of
samples for a city (within a given time period) and 𝐷 is the total
length of the city’s road network. Note that the factor of 2 is to
account for the fact that our street view images only cover one of
the two sides of a street at any sampled point.

Finally, putting all the above pieces together, we can estimate
the number of cameras 𝐾𝑖 in city 𝑖:

�̂�𝑖 =
𝑛𝑖

𝑐𝑖𝑟
, (1)

where 𝑟 is the recall of our model, 𝑛𝑖 is the number of verified
camera detections, and 𝑐𝑖 is the proportion of the road network of
a city covered by our sample.

Similarly, we model variance by treating each sampled instance
as a draw from a Bernoulli distribution with detection probability
𝑝𝑖 = 𝑛𝑖/𝑁𝑖 . Assuming that recall and coverage are both exact, we
can estimate the standard error of the number of cameras 𝐾𝑖 as:

ŝe(�̂�𝑖 ) =
√
𝑁𝑖 · 𝑝𝑖 · (1 − 𝑝𝑖 )

𝑐𝑖𝑟
. (2)

4 RESULTS
Applying the methods described above, we now estimate the total
number and spatial distribution of cameras on the road network
for all 16 cities. In addition, for the U.S. cities, we estimate the
prevalence of cameras across city zones, and examine the racial
composition of the neighborhoods in which cameras are concen-
trated.

4.1 Camera Prevalence
Table 3 shows the number of identified cameras for each city—after
human verification—along with point estimates and 95% confidence
intervals for camera density and for the total number of cameras,
following Eqs. (1) and (2). The same density estimates are also
depicted in descending order in Figure 10. We find that camera
density varies widely between cities: For example, Boston and New
York City, the U.S. cities with the highest camera density, have
almost four times as many cameras per kilometer than Seattle and
Los Angeles.3 We note that our estimates exclude indoor cameras,
as well as outdoor cameras not captured by street view images.
Perhaps due to these limitations, our estimate of 10,100 cameras
in New York City is lower than the 18,000 cameras that the NYPD
reportedly has access to [30].

4.2 Camera Placement
The detection maps in Figure 8 show that cameras are not dis-
tributed uniformly across a city. Despite sampling uniformly over

3Our computer vision model was trained on San Francisco data, and so it is possible
that the camera identification rate in San Francisco is inflated due to over-fitting. We
note, however, that while model precision varies between cities, Philadelphia and
Boston both have higher precision than San Francisco, which suggests our model does
indeed transfer well across contexts.



Figure 5: The spatial distribution of sampled points on the road network for three illustrative cities. Left: San Francisco;Middle:
Chicago; Right: New York City.

City Road length (km) Mean road coverage (m) No. of detections Estimated density (cameras/km) Estimated number of cameras

Boston 2,589 26 516 0.63 (0.03) 1,600 (100)
New York 16,362 29 556 0.62 (0.03) 10,100 (400)
Baltimore 3,746 30 512 0.54 (0.02) 2,000 (100)
San Francisco 3,101 24 398 0.52 (0.03) 1,600 (100)
Chicago 10,449 30 382 0.41 (0.02) 4,300 (200)
Philadelphia 6,759 29 348 0.38 (0.02) 2,600 (100)
Washington 3,262 33 237 0.23 (0.01) 700 (50)
Milwaukee 4,899 33 202 0.19 (0.01) 900 (100)
Seattle 5,569 29 155 0.17 (0.01) 1,000 (100)
Los Angeles 21,095 29 144 0.16 (0.01) 3,300 (300)

Seoul 14,748 29 869 0.95 (0.03) 13,900 (500)
Paris 1,853 24 590 0.76 (0.03) 1,400 (100)
Tokyo 46,688 29 428 0.47 (0.02) 21,700 (1,000)
London 28,907 32 448 0.45 (0.02) 13,000 (600)
Bangkok 34,692 29 324 0.35 (0.02) 12,200 (700)
Singapore 5,794 29 172 0.19 (0.01) 1,100 (100)

Table 3: Number of detections and estimates of camera density and total cameras in each city (𝑁 = 100,000 images), arranged
in descending order of camera density. Standard errors are listed in parentheses. We impute a mean road coverage of 29m for
cities without adequate building footprint data.

the road network, we find densely covered regions in each city,
representing neighborhoods with a high concentration of cameras.
We examine these patterns in more detail for the 10 U.S. cities we
consider, analyzing the rate of (verified) camera identifications per
street image across zoning designations and neighborhood racial
composition.

Figure 11 shows the camera identification rate for different zon-
ing designations aggregated over the 10 U.S. cities we analyze. We
find that images from mixed, industrial, and commercial zones are
more likely to contain an identified camera than images from public
(such as parks and other public facilities) and residential areas. For
example, the identification rate in mixed zones (2.1%) is more than
three times the rate in residential zones (0.6%). This pattern holds
for the majority of our chosen cities.

To compute the camera identification rate, we assigned each
sampled point to the zoning designation of the closest parcel of
land. To do so, we collected land use and zoning designation data for
all 10 cities, and then standardized the zoning code into one of the
following five categories: mixed, industrial, commercial, public, and

residential. Zones with codes that represent planned development
or did not clearly fit into the aforementioned categories are labeled
as unknown and omitted in the following analysis. We find that
60% of sampled points are classified as residential, and unknown
codes comprise less than 3% of sampled points.

We next examine the relationship between camera identification
rate and the share of residents in the surrounding area that iden-
tify as belonging to a minority racial or ethnic group, aggregated
over our 10 U.S. cities. To compute this relationship, we assigned
each sampled image to the minority proportion of the census block
group in which it is located, as estimated by the 2018 American
Community Survey. For purposes of this analysis, we define “minor-
ity” as comprising those individuals who identify either as Hispanic
(regardless of their race) or who do not identify as white.

Figure 12 shows the results. The blue line is a regression (with
both linear and quadratic terms) fit to the data, and indicates that
an increase in the share of minority residents in a neighborhood
is associated with an increase in camera identification rate. For
example, the identification rate in census blocks with a 50%minority



Figure 6: Illustration of how we estimate the road segment
coverage for one image. Right: The Google Street View im-
age. Left: Corresponding field of view onmap.We obtain the
point location of each image, 𝑝, and find the closest point 𝑝 ′

within the footprint of the nearby buildings. The length of
the road in view is twice the distance 𝑑 between 𝑝 and 𝑝 ′, as
each imagehas a 90-degree field facing the road.We estimate
the road segment covered in the shown image has a length
of 19.55 meters.

Identification Rate

Public 0.0014∗∗∗ (0.0002)
Commercial 0.0055∗∗∗ (0.0002)
Industrial 0.0053∗∗∗ (0.0002)
Mixed 0.0060∗∗∗ (0.0003)
Percentage minority 0.0059∗∗∗ (0.0009)
Percentage minority2 -0.0044∗∗∗ (0.0008)

Observations 787,418

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 4: Coefficients and standard errors for a linear prob-
ability model of camera identification as a function of city,
zone, andminority share (with a quadratic term), fit on sam-
pled points in the period 2015–2021. The reference group for
zone is residential neighborhoods.

share (0.38%) is twice as high as in those blocks with a 10% minority
share (0.2%). We see qualitatively similar results with higher-order
polynomial fits.

The observed concentration of cameras in majority-minority
neighborhoods persists even after adjusting for zone category.
Specifically, Table 4 shows the results of a linear probability model
that predicts camera detections as a function of city, zone, and racial
composition—where we again use a quadratic term to account for
the curvature seen in Figure 12. The fitted model confirms that
camera identifications increase with the minority share of resi-
dents, plateauing at approximately 60% share and then remaining
relatively flat, as in Figure 12. It is unclear what is driving the ap-
parent concentration of cameras in high minority neighborhoods.
However, regardless of the underlying mechanism, these results
point to the potential impacts that video surveillance can have on
communities of color.

5 DISCUSSION AND CONCLUSION
By applying computer vision, human verification, and statistical
analysis to large-scale, geo-tagged image data, we have—for the
first time—estimated the number and spatial distribution of outdoor
surveillance cameras in 16 major cities around the world. Further,
the approach we have developed has the potential to scale to even
more cities across the country and the world, providing a new
perspective on the state of video surveillance.

In the 16 cities we analyzed, we found considerable variation in
the estimated number of surveillance cameras. Among U.S. cities,
our analysis also shows that cameras are more likely to be found in
industrial, commercial, and mixed zones as compared to residential
areas. Finally, even after adjusting for zone category, we find a
greater concentration of cameras in majority-minority neighbor-
hoods, highlighting the need to carefully consider the potential
disparate impacts of surveillance technology on communities of
color.

While our computational approach is able to provide a novel
quantitative perspective into the state of surveillance, it is still sub-
ject to several important limitations, which we outline below. First,
our method relies on being able to see cameras from the street,
and, more specifically, from street view images. Indoor cameras, as
well as outdoor cameras obscured from view, are not counted by
our estimation pipeline. Further, due to the limited resolution of
street view images, small cameras—such as increasingly popular
doorbell cameras—are difficult to detect by either humans or algo-
rithms. Higher resolution and higher coverage image data could
mitigate these issues in the future. However, our current results
likely underestimate the density of cameras in a city.

Second, our human annotators may not perfectly label cameras
in the candidate images selected by the model, skewing our final
estimates. For example, it is possible that they rule out an actual
camera (leading to an undercount) or, conversely, that they report
a camera that is not in fact there (leading to an overcount). To
minimize these errors, every candidate image is independently
labeled by three human annotators, but at least some errors likely
remain.

Third, errors in the estimated recall of our computer vision
model—and, similarly, errors in the estimated coverage of our
images—can bias our final estimates. Estimating city-specific model
recall is particularly challenging, as it requires city-specific labeled
datasets. In our analysis, we thus estimated recall for a single city,
San Francisco, in which the locations of some surveillance cameras
had already been compiled, which we then apply to other jurisdic-
tions. Further, our variance estimates treat the recall and coverage
as known quantities. Accounting for errors in their measurement
would increase the variance of our final estimates.

Finally, our method does not provide any information about
the cameras other than what can be inferred from their appear-
ance. For example, we cannot determine whether identified cameras
are decoys, are malfunctioning, or otherwise are not in use. We
likewise cannot always tell who owns the cameras (e.g., a govern-
ment agency or a private citizen), who has access to the video, and
whether the camera footage is stored. All of these factors are critical
in assessing the downstream consequences of video surveillance.
Although difficult, future work may be able to answer some of these



(a) Raw Image (b) Segmentation (c) Bounding Boxes (d) Verification

Figure 7: Illustration of our machine detection and human verification pipeline. For each image yielding a positive model de-
tection, human coders verify the detection based on the raw image (a) and bounding boxes (c) generated from the segmentation
(b). In this example, the human coder confirmed the upper box is a camera but not the lower box (d).

(a) San Francisco (b) New York City (c) Seattle (d) Chicago (e) Washington, D.C.

(f) Milwaukee (g) Baltimore (h) Boston (i) Los Angeles (j) Philadelphia

Figure 8: Locations of verified cameras in 10 large U.S. cities for the period 2015–2021. Densely clustered areas of points indi-
cate regions with high camera density in each city. Camera density varies widely between neighborhoods. Note: Scale varies
between cities.

questions by conducting a more intensive audit of a sample of the
identified cameras.

Despite these limitations, we believe our approach and results
constitute an important step toward understanding the use of
surveillance technology across the world. More broadly, our gen-
eral statistical estimation pipeline can be extended and applied to
characterize the prevalence and spatial distribution of a variety of
other city elements detectable from street images. Looking forward,
we hope this work spurs further theoretical and empirical research
at the intersection of computer vision, urban computing, and public
policy.

PUBLICATION NOTE
This version of the paper is updated from our original publication
in two important respects. First, we now credit Turtiainen et al.
[39] both for creating a state-of-the-art camera detection model
and for suggesting that computer vision could, in theory, be ap-
plied to street view data to map surveillance cameras. We were
aware of their work when initially conducting our research, but we
unfortunately failed to include a citation to their paper. We thank
Turtiainen et al. for bringing this to our attention and we apologize
for the omission. Second, we discovered a coding error in our image
sampling strategy that corrupted our analysis of camera density
over time. We have now removed the results of that analysis.
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Figure 11: Camera identification rates (cameras per image)
for different zoning designations across 10 large U.S. cities
for the period 2015–2021. Horizontal lines indicate 95% CIs
for the estimate. Cameras are more likely to be detected in
mixed, industrial, and commercial zones than in public and
residential zones.
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Figure 12: The relationship between camera identification
rate (cameras per image) and minority share of population,
aggregated across 10 large U.S. cities for the period 2015–
2021. The blue line shows a regression fit to the data, and
indicates that cameras are more likely to be detected in
majority-minority neighborhoods than in predominantly
non-Hispanic white neighborhoods.

Figure 9: Distribution of the length of road covered by a
street view image in San Francisco, Chicago and New York
City. We limit our analysis to images taken within 30 me-
ters of the nearby buildings—corresponding to 60 meters of
street coverage—since we cannot reliably detect cameras at
further distances.
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Figure 10: Estimated camera density (cameras per km) for
■ 10 large U.S. cities and ■ 6 other major cities. Horizontal
lines indicate 95% CIs for the estimate.
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