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Summary. Judges, doctors and managers are among those decision makers who must often
choose a course of action under limited time, with limited knowledge and without the aid of a
computer. Because data-driven methods typically outperform unaided judgements, resource-
constrained practitioners can benefit from simple, statistically derived rules that can be applied
mentally. In this work, we formalize long-standing observations about the efficacy of improper
linear models to construct accurate yet easily applied rules. To test the performance of this
approach, we conduct a large-scale evaluation in 22 domains and focus in detail on one: judicial
decisions to release or detain defendants while they await trial. In these domains, we find that
simple rules rival the accuracy of complex prediction models that base decisions on considerably
more information. Further, comparing with unaided judicial decisions, we find that simple rules
substantially outperform the human experts. To conclude, we present an analytical framework
that sheds light on why simple rules perform as well as they do.
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1. Introduction

In field settings, decision makers often choose a course of action based on experience and intu-
ition rather than on statistical analysis (Klein, 2017). This includes doctors classifying patients
on the basis of their symptoms (McDonald, 1996), judges setting bail amounts (Dhami, 2003) or
making parole decisions (Danziger et al., 2011) and managers determining which ventures will
succeed (

�

Astebro and Elhedhli, 2006) or which customers to target (Wübben and Wangenheim,
2008). Despite the prevalence of this approach, a large body of work shows that in many
domains intuitive inferences are inferior to those based on statistical models (Meehl, 1954;
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Dawes, 1979; Dawes et al., 1989; Camerer and Johnson, 1997; Tetlock, 2005; Kleinberg et al.,
2015, 2017).

In this work, we generalize from research on improper linear models (Einhorn and Hogarth,
1975; Green, 1977; Dawes, 1979; Gigerenzer and Goldstein, 1996; Waller and Jones, 2011) to
suggest a straightforward method for constructing simple yet accurate decision rules that experts
can apply mentally. This select, regress and round method results in rules that are fast, frugal and
clear: fast in that decisions can be made quickly in one’s mind, without the aid of a computer;
frugal in that they require very little information to reach a decision; and clear in that they
expose the grounds on which classifications are made.

Decision rules satisfying these criteria have many benefits. Fast rules that can be applied
mentally reduce transaction costs, encouraging persistent use. In medicine, frugal rules require
fewer tests, which saves time, money and, in the case of triage situations, lives (Marewski and
Gigerenzer, 2012). Frugal decision rules incorporating predictors that are broadly related to
outcomes of interest are well suited for settings in which a model that is highly customized for
one population may not generalize to other populations (Wyatt and Altman, 1995). The clarity of
simple rules provides insight into how systems work and exposes where models may be improved
(Gleicher, 2016; Sull and Eisenhardt, 2015), which may encourage adoption of such tools in
clinical settings (Wyatt and Altman, 1995). Clarity can even become a legal requirement when
society demands to know how algorithmic decisions are being made (Goodman and Flaxman,
2016; Corbett-Davies et al., 2017).

After describing the select, regress and round method, we evaluate its efficacy on 21 data sets
from the University of California, Irvine (UCI), Machine Learning Repository and show that
in many cases simple rules are competitive with state of the art machine learning algorithms.
To illustrate in detail the value of simple rules, we present a case-study of judicial decisions
for pretrial release. On the basis of an analysis of over 100000 cases, we show that simple rules
substantially improve on the efficiency and equity of unaided judicial decisions. In particular,
we estimate that judges can detain a third fewer defendants while simultaneously increasing the
number who appear at their court dates. In the judicial context, as in many policy settings, it
is statistically challenging to evaluate decision rules based solely on historical data. The key
difficulty is that we cannot observe what would have happened under an alternative course of
action. What would have happened, for example, if one released a defendant who in reality
was detained? We address this issue by first estimating the relevant counterfactual outcomes,
and then assessing the sensitivity of our estimates to unobserved confounding, generalizing the
technique of Rosenbaum and Rubin (1983a).

Our results add to a growing literature on interpretable machine learning. In addition to meth-
ods for better understanding complex machine learning models and data structures (Kim et al.,
2015; Ribeiro et al., 2016), several methods have been introduced to construct interpretable deci-
sion rules, similar to the simple decision rules that we discuss here. For example, Van Belle et al.
(2012) used convex optimization to build interval-coded scoring models for binary outcomes.
More general methods for constructing interpretable decision rules have been recently pro-
posed, including the supersparse linear integer model called ‘SLIM’ (Ustun and Rudin, 2016),
Bayesian rule lists (Wang and Rudin, 2015) and interpretable decision sets (Lakkaraju et al.,
2016). These methods all produce rules that are easy to interpret and to apply but the methods
differ considerably on the ease of rule creation. As an important practical consideration, the
method that we investigate here can be carried out by a practitioner without extensive training
in statistics, using popular open-source software—though it bears emphasis that appropriate
application of all statistical methods requires both domain knowledge and familiarity with the
relevant data.
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The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-
a-datasets.

2. Select, regress and round: a simple method for creating simple rules

We begin by presenting a simple method—which we call select, regress and round—for construct-
ing simple decision rules. This procedure generalizes ideas that appear throughout the judgement
and decision-making literature on improper linear scoring rules and formalizes heuristics that
are used by practitioners in creating decision aids.

The rules that we construct are designed to aid classification or ranking decisions by assigning
each item in consideration a score z, computed as a linear combination of a subset S of the item
features:

z= ∑
j∈S

wjxj,

where the weights wj are integers. Often, one seeks to make dichotomous decisions (e.g. whether
to detain or to release an individual pending trial), which amounts to setting a threshold and
then taking a particular course of action if and only if the score is above that threshold.

In the cases that we consider, the features themselves are typically 0–1 indicator variables
(indicating, for example, whether a person is male, or whether an individual is 26–30 years
old), and so the rule reduces to a weighted checklist, in which one simply sums up the (integer)
weights of the applicable attributes. Although it is possible to apply select, regress and round
to continuous features directly, in the spirit of simplicity and interpretability, we recommend
discretizing continuous covariates, using, for example, three equal-sized bins, as proposed in
Gelman and Park (2009). But in practice, as always, domain knowledge and technical consid-
erations play an important role in determining appropriate transformations or discretization
schemes. For example, rather than simply partitioning an age covariate into three bins, one
might use 10-year buckets. Similarly, one might collapse categorical features with several levels
into a smaller number of more semantically meaningful groups.

This class of rules has two natural dimensions of complexity: the number of features that are
included in the subset S and the magnitude of the weights. Given integers k �1 and M �1, we
apply the following three-step procedure to construct rules with at most k features and integer
weights bounded by M (i.e. |S|�k and −M �wj �M).

Step 1: select—from the full set of features, select k features via forward stepwise selection.
This is done by iteratively adding the feature that minimizes the Akaike information criterion
AIC. For fixed k, we note that standard selection metrics (e.g. AIC or the Bayesian information
criterion BIC) are theoretically guaranteed to yield the same set of features.
Step 2: regress—using only these k selected features, train an L1-regularized (lasso) logistic
regression model on the data, which yields (real-valued) fitted coefficients β1, : : : , βk.
Step 3: round—rescale the coefficients to be in the range [−M, M], and then round the rescaled
coefficients to the nearest integer. Specifically, set

wj = round
(

Mβj

maxi |βi|
)

:

This select, regress and round method for rule construction extends research on unit-weighted
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linear models by incorporating feature selection and by adopting more general integer weights
to generate a richer family of rules, the accuracy of which we examine in the next section. In
practice, we recommend that developers of such rules apply the procedure for a range of small
values of k and M that are appropriate to their domain, and then pick the values that perform
best on context-specific metrics, balancing simplicity with performance: an approach that we
illustrate below.

We note that rules that are constructed in this way may have fewer than k features, since
the lasso regression in step 2 may result in coefficients that are identically 0, and rescaling
and rounding coefficients in step 3 may zero-out additional terms. For step 2, the regularization
parameter λ is chosen via cross-validation. In our applications, following Friedman et al. (2010),
we explore a regularization path with 1000 values of λ spaced evenly on the log-scale in the
range .λmin, λmax/, where λmin = 10−4 and λmax is selected as the minimum value such that
all coefficients are regularized to 0. Unlike λ, the parameters k and M cannot be selected via
an automated procedure unless we formally quantify the trade-off between performance and
simplicity, since both performance and complexity increase with larger values of k and M.
However, in practice, as we show below, we might achieve approximately the same performance
as a traditional logistic regression model with relatively small values of k and M, meaning that
the trade-off may be negligible.

3. Evaluating the efficacy of simple rules

We apply the select, regress and round procedure to 21 publicly available data sets to examine
the trade-off between rule complexity and performance. These data sets all come from the UCI
Machine Learning Repository (Table 1) and were selected according to four criteria:

(a) the data set involves binary classification (as opposed to a regression problem), where
we set the plurality class as the target of prediction for those data sets whose outcome
variable takes more than two values;

(b) the data set is provided in a standard and complete form;
(c) the data set involves more than 10 (binarized) features;
(d) the classification problem is a problem that a human could plausibly learn to solve with

the given features.

For example, we included a data set in which the task was to determine whether cells were ma-
lignant or benign on the basis of various biological attributes of the cells, but we excluded image
recognition tasks in which the features were represented as pixel values. This fourth requirement
limits the scope of our analysis and conclusions to domains in which human decision makers
typically act without the aid of a computer.

3.1. Benchmarking to complex prediction models
We benchmark the performance of our simple rules against three standard statistical models:
logistic regression, L1-regularized logistic regression and random forests. The random-forests
method, in particular, is considered to be one of the best off-the-shelf classification algorithms
in machine learning (Fernández-Delgado et al., 2014; Kleinberg et al., 2017). These models
were fitted in R with the glm, glmnet and randomForest packages respectively. For the
L1-regularized logistic regression models, the cv.glmnet method was used to determine the
best value of the regularization parameter λ with nested tenfold cross-validation and 1000 values
of λ. We used 1000 trees for the random-forest models.

Across the 21 UCI data sets, variables are documented as categorical (discrete and
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Table 1. Summary of UCI data sets†

Domain Instances Features Complete Continuous Binarized Proportion
instances features features positive

1, adult 32561 14 30162 4 96 25
2, annealing 798 38 798 7 54 76
3, audiology-std 200 41 190 0 55 24
4, bank 41188 20 41188 9 62 11
5, bankruptcy 250 6 250 0 13 43
6, car 1728 6 1728 0 16 70
7, chess-krvk 28056 6 28056 0 35 10
8, chess-krvkp 3196 36 3196 0 37 52
9, congress-voting 435 16 232 0 17 53

10, contrac 1473 9 1473 2 20 43
11, credit-approval 690 15 653 6 44 45
12, ctg 2126 38 2126 33 67 78
13, cylinder-bands 541 39 279 19 65 65
14, dermatology 366 34 358 34 69 31
15, german credit 1000 20 1000 7 56 70
16, heart-cleveland 303 13 299 6 26 46
17, ilpd 583 10 579 9 20 72
18, mammo 961 5 830 1 18 49
19, mushroom 8124 22 5644 0 76 38
20, wine 178 13 178 13 27 40
21, wine qual 6497 12 6468 11 24 63

†For each domain, we report the name of the data set, the number of rows and features (columns
excluding the class label) in the original data set, the number of complete rows with no missing
data, the number of continuous features, as well as the number of features after discretizing con-
tinuous variables and expanding categorical variables to binary indicators, and the proportion
of instances in the target class (proportion positive). The context of each domain is presented
in detail in Appendix A.

unordered) ordinal (discrete and ordered) or continuous. For our simple rules, we represent
discrete covariates—both categorical and ordinal—as a series of binary indicator variables,
with one indicator per category. In particular, for simplicity, we ignore the category ranking
in ordinal variables. Further, all continuous features are discretized into three approximately
equal-sized bins representing (categorical) low, medium and high values of the feature, fol-
lowing Gelman and Park (2009). For the three complex models, we include the above feature
representations, as well as the original (non-discretized) values of continuous variables. Also,
for ordinal variables—in addition to their unordered categorical representation—we include
a feature representation that preserves the order of categories. As is common, the categories
of an ordinal variable are represented as sequential integers, with our complex models fitting
orthogonal polynomials to these integer values (Chambers et al., 1992).

On each of the UCI data sets that we analyse here, we construct a family of simple rules
having k ∈ {1, : : : , 10} features, with feature weights bounded by M ∈ {1, 2, 3}. We count the
number of features k before binarization. For example, a categorical covariate with five possible
values—and hence converted to five binary variables—counts as one of the k features in the
simple rule, not five. The head-to-head comparison with complex models provides a difficult
test for the simple rules in part because the simple rules can only base their predictions on
1–10 features. The complex models, in contrast, can train and predict with all the features in a
domain, which number between 5 and 41 with a mean of 20. We provide the complex models
with an additional advantage over the simple rules by including continuous and ordinal features
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Fig. 1. Performance of simple and complex rules (performance is measured in terms of mean
cross-validated AUC over all 21 data sets; the simple models can predict with up to 10 features; the number
of ‘all’ features used by random forests .C/, the lasso (�) and logistic regression .�/ varied by domain, with
an average of 20): , simple models with no rounding; , , , simple models rounding
coefficients to [�3, 3], [�2, 2] and [�1, 1] respectively

in their native representation as well as their unordered, discretized versions. In contrast, the
simple rules include only the unordered discretized versions. We note that although in theory
the out-of-sample performance of logistic regression could be improved by incorporating a
variable-selection step, we find no qualitative difference in performance when adding this step
in our specific case.

Fig. 1 shows model performance, measured in terms of mean cross-validated area under the
receiver operating characteristic curve, AUC, across the 21 data sets, as a function of model
size and coefficient range. AUC for each model on each data set is computed via tenfold cross-
validation. We find that simple rules with only five features and integer coefficients between −3
and 3 perform on a par with logistic regression and L1-regularized logistic regression trained on
the full set of features. For 1–10 features, the [−3, 3] model (the green curve in Fig. 1) differs from
the unrounded lasso model (the black curve) by less than 1 percentage point. The performance
of the random-forest model—which is designed to capture non-linear structure—is somewhat
better: trained on all features, the random-forest algorithm achieves a mean AUC of 92%; the
mean AUC is 87% for simple rules with at most five features and integer coefficients between
−3 and 3.

In Appendix B.2, we examine the performance of select, regress and round for each of the 21
UCI data sets separately. As Figs 11 and 12 there demonstrate, across almost all data sets, simple
rules have AUC comparable with that of logistic regression (with or without regularization)
and have slightly lower AUC than a random-forest model. As these results indicate, complex
prediction methods certainly have their advantages, but the gap in performance between simple
rules and fully optimized prediction methods is not as large as one might have thought.

3.2. Benchmarking to integer programming
The simple rules that we construct take the form of a linear scoring rule with integer weights.
To produce such rules, mixed integer programming is a natural alternative to our select, regress
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Fig. 2. Comparing binary classification accuracy for select, regress and round and SLIM on 21 UCI data
sets: , cases in which SLIM successfully found an optimal integer solution; , cases in which the time limit
of 6 h was exceeded

and round method, and SLIM (Ustun and Rudin, 2016) is the leading instantiation of that
approach, with which we now compare. Integer programming is an ‘NP-hard’ problem, and so
following Ustun and Rudin (2016) we set a time limit for SLIM: a 10-min limit was set in Ustun
and Rudin (2016), but we allow up to 6 h of computation per model. For seven of the 21 data
sets, SLIM found an integer-optimal solution within the time limit, and it returned approximate
solutions in the remaining 14 cases.

Fig. 2 compares the binary classification accuracy of SLIM and select, regress and round on
the 21 UCI data sets, where each point corresponds to a data set. Both methods are constrained to
produce rules with at most five features and integer coefficients between −3 and 3. In comparing
with SLIM, here we define the number of features k to be the number of binarized variables—
for both SLIM and select, regress and round—since this method of accounting is what is used
by SLIM. For example, whereas a single categorical variable with five possible values would
have been considered as one feature in the previous section, each possible value is counted as
a feature here, and hence including the entire categorical variable would result in a model with
five features. We show 0–1 accuracy as opposed to AUC, since SLIM produces only optimized
binary decisions, for which AUC is not applicable. In computing 0–1 accuracy for select, regress
and round, we select a cut point that corresponds to approximately 0.5 on the probability scale.
Accuracy is computed out of sample via tenfold cross-validation. Both methods for producing
simple rules yield comparable results: averaged across all 21 data sets, SLIM and select, regress
and round both achieve a mean accuracy of 86%. Even in the seven cases where SLIM found
integer optimal solutions, the performance is nearly identical to that of the simple select, regress
and round method.

In terms of classification accuracy, select, regress and round generates rules that are on a par
with those obtained by solving mixed integer programs. We note, however, two advantages of
our approach. First, whereas select, regress and round yields results almost instantaneously,
integer programs can be computationally expensive to solve. Second, our approach is relatively
simple, both conceptually and technically, accordingly easing adoption for practitioners.
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4. Case-study: pretrial release decisions

To illustrate the value—and challenges—of applying simple decision rules in practice, we now
turn to the domain of pretrial release determinations and present an extended case-study. In the
USA, defendants are typically arraigned shortly after arrest in a court appearance where they
are provided with written notice of the charges that are alleged by the prosecutor. At this time,
a judge must decide whether a defendant, while awaiting trial, should be released on one’s own
recognizance or, alternatively, subject to monetary bail. In practice, if the judge rules that bail
be set, defendants often await trial in jail since many of them do not have the financial resources
to post bail. Moreover, when defendants can post bail, they often do so by contracting with
a bail bondsman and in turn incur hefty fees. The judge, however, has a legal obligation to
consider taking measures that are necessary to secure the defendant’s appearance at required
court proceedings. Pretrial release decisions must thus balance the risk of flight against the
high burden that bail requirements place on defendants. In practice, judges may consider other
factors—e.g. a defendant’s threat to public safety or ability to afford bail—but risk of flight is
the only legally relevant factor for the specific jurisdiction that we analyse below.

A key statistical challenge in this setting is that we cannot directly observe the effects of
hypothetical decision rules. Unlike the class of prediction problems that was discussed in Section
3, outcomes in this domain are affected by a judge’s decisions, and we observe only the outcomes
that result from those decisions. For example, if a proposed policy recommends releasing some
defendants who in reality were detained by the judge, we do not observe what would have
happened if the rule had been followed. This counterfactual estimation problem—also known
as offline policy evaluation (Dudı́k et al., 2011)—is common in many domains. We address
it here by adapting tools from causal inference to the policy setting, including the method
of Rosenbaum and Rubin (1983a) for assessing the sensitivity of estimated causal effects to
unobserved confounding.

Our analysis is based on 165000 adult cases involving non-violent offences charged by a large
urban prosecutor’s office and arraigned in criminal court between 2010 and 2015. This set was
obtained by starting with a random sample of 200000 cases provided to us by the prosecutor’s
office, and then restricting to those cases involving non-violent offences and for which the records
were complete and accurate. Our initial sample of 200000 cases does not include instances where
defendants accepted a plea deal at arraignment, obviating the need for a pretrial release decision.
For each case, we have a rich set of attributes: 49 features describe characteristics of the current
charges (e.g. theft, gun related), and 15 describe characteristics of the defendant (e.g. gender, age
or prior arrests). We also observe whether the defendant was released on recognizance (ROR)
and whether the defendant had a failure to appear (FTA) at any of the subsequent court dates.
We note that, even if bail is set, a defendant may still fail to appear since one can post bail and
then miss a court date. Overall, 69% of defendants are ROR and 15% of ROR defendants fail
to appear. Of the remaining 31% of defendants for whom bail is set, 45% are eventually released
and 9% fail to appear. As a result, the overall FTA rate is 13%.

In our analysis below, we randomly divide the full set of 165000 cases into three approximately
equal subsets; we use the first fold to construct decision rules (both simple and complex), and
the second and third to evaluate these rules, as described next.

4.1. Rule construction
We start by constructing complex statistical decision rules for balancing the risk of flight against
the burdens of bail. These rules serve as a benchmark for evaluating the simple rules that we
create below. On the first fold of the data, we restrict to cases in which the defendant was ROR by
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Table 2. A simple rule for estimating flight risk with five features: age, prior
FTAs, major charge category, housing instability and defence attorney
type†

Feature Score Feature Score

18�age < 26 2 1 prior FTA 2
26�age < 31 1 2 prior FTAs 3
Major charge group A −2 3 or more prior FTAs 3
Major charge group B −1 Unstable housing 3
Major charge group C 1 Defence attorney type A 2
Major charge group D 2 Defence attorney type B −1
Major charge group E 2 Defence attorney type C −3

†A defendant’s flight risk is obtained by summing the corresponding scores for
the features that apply to the case.

the judge and then fit an L1-regularized logistic (lasso) regression and random forest, using the
procedures that were described in Section 3.1, to estimate the likelihood that an individual fails to
appear at any of their subsequent court dates. We fit these models on all available information
about the case and the defendant, excluding race because of legal and policy concerns with
basing decisions on protected attributes (Corbett-Davies et al., 2017; Corbett-Davies and Goel,
2018). We note, however, that including race does not significantly affect performance. The
fitted models let us compute risk scores (i.e. estimated flight risk if ROR) for any defendant.
These risk scores can in turn be converted into a binary decision rule by selecting a threshold
for releasing individuals. For example, a defendant might be ROR if and only if their estimated
risk of flight is below 20%.

We construct a family of simple rules by applying select, regress and round as described
in Section 2, using all available features. The exact discretization scheme that was used for
numerical features—such as age and a defendant’s number of prior failures to appear—was
determined in consultation with domain experts in the prosecutor’s office with which we worked.
The resulting rule using five features with integer coefficients between −3 and 3 is presented
in Table 2. Unsurprisingly, missing court appearances in the past is a strong indicator of risk
of flight and an individual’s risk also declines with age, in line with conventional wisdom. The
rule in Table 2, however, may be inappropriate for implementation given that some features
and their associated scores could be challenged as undesirable. For example, defendants with
unstable housing are rated a higher risk, which may be statistically true but which could lead to
adverse outcomes for poorer defendants. Particularly in policy domains, feature selection often
requires careful thought.

In practice, we recommend that variable selection incorporates domain expertise. For ex-
ample, starting from a list of predictive features, as in Table 2, one might exclude problematic
variables. On the basis of discussions with experts in our partner prosecutor’s office, we ulti-
mately used only two features—age and prior history of failing to appear—which are generally
viewed as acceptable considerations in pretrial decision making. In this case, we can think of the
‘select’ step in the select, regress and round strategy as incorporating both human and machine
judgement. Specifically, we fit the following model:

Pr.Yi =1/= logit−1.β0 +β
priors
1 H1

i +β
priors
2 H2

i +β
priors
3 H3

i +β
priors
4+ H4+

i +β
age
18−20A18−20

i + : : :

+β
age
46−50A46−50

i /,



10 J. Jung, C. Concannon, R. Shroff, S. Goel and D. G. Goldstein

79% 52% 33%

85% 70% 56%

81% 61% 46%

77% 53% 34%

51+

31−50

21−30

18−20

0 1 2+

Prior FTAs

A
ge

Fig. 3. Graphical representation of a simple rule based on the scores shown in Table 3 with a release
threshold of 3.5; groups to the left of the black line in the grid are those that would be released under the rule;
for comparison, the shading and numbers in the grid show the proportion of defendants who were actually
ROR by judges in each group

Table 3. Simple rule for estimating the risk of flight, where a
defendant’s risk is obtained by summing the appropriate scores
for age and prior history of FTA

Feature Score Feature Score

18�age < 21 3 No prior FTAs 0
21�age < 31 2 1 prior FTA 2
31�age < 51 1 2 or more prior FTAs 3
51�age 0

where Yi ∈{0, 1} indicates whether the ith defendant failed to appear, HÅ
i ∈{0, 1} indicates the

defendant’s number of prior failures to appear (exactly 1, 2, 3 or at least 4) and AÅ
i ∈ {0, 1}

indicates the binned age of the defendant (18–20, 21–25, 26–30, 31–35, 36–40, 41–45 or 46–
50 years). The parameters β

priors
Å and β

age
Å are the coefficients corresponding to each binary

indicator variable. For identifiability, indicator variables for no prior FTAs and age 51 years
and older have been omitted. As before, this model is fitted on the subset of cases in the first
fold of data for which the judge released the defendant. Next, we rescale the age and prior FTA
coefficients so that they lie in the interval [−3, 3]; specifically, we multiply each coefficient by
the constant

3

max.|βprior
1 |, : : : , |βpriors

4+ |, |βage
18−20|, : : : , |βage

46−50|/
:

Finally, we round the rescaled coefficients to the nearest integer.
Fig. 3 shows the result of this procedure. For any defendant, a risk score can be computed by

summing the relevant terms in Table 3. These risk scores can be converted into a binary decision
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Fig. 4. Empirical frequency of FTA for each risk score, based on the simple rule shown in Fig. 3

rule by selecting a threshold for releasing individuals. For example, a defendant might be ROR
if and only if their risk score is below 3.5; a graphical representation of such a binary decision
rule is also shown in Fig. 3.

The application of a simple rule derived from the select, regress and round procedure yields an
integer score for each defendant. However, in practice it may be useful also to have a probabilistic
estimate of each defendant’s risk (i.e. the probability that a defendant will fail to appear if
released). A given integer score can be converted into a probabilistic risk estimate by considering
all released defendants in the training set with that score, and then computing the empirical
frequency that those defendants failed to appear. Fig. 4 shows the empirical frequency of FTA
for each risk score based on the simple rule that is shown in Fig. 3. For example, a score of
3—the threshold value that was chosen in Fig. 3—corresponds to a risk estimate of 20%. These
probability estimates characterize the risk among individuals who were in reality released. It is
important, however, to note that those who were released may be qualitatively different from
those who were not, and so these estimates provide only approximate risk in the full population
of defendants, which is an issue that we consider in more detail in the following sections. We
specifically examine the robustness of these probability estimates in Appendix B.1 and find that
they are comparable with estimates from more complex prediction models.

4.2. Policy evaluation
AUC is a useful general measure of performance, and hence the metric that we consider when
evaluating the 21 UCI data sets in Section 3. But in applied settings it is often necessary to
measure the costs and benefits of any given rule directly. We do that here by assessing decision
rules for pretrial release on two key dimensions:

(a) the proportion of defendants who are released under the rule and
(b) the resulting proportion who fail to appear at their court proceedings.

It is straightforward to estimate the former, since we need only to apply the rule to historical data
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to see what actions would have been recommended. For example, if defendants are released if and
only if their risk score is below 3.5, 79% would be ROR; under this rule, bail would be required
for only two-thirds as many defendants relative to the status quo. Forecasting the proportion
who would fail to appear, however, is generally much more difficult. The key problem is that, for
any particular defendant, we observe only the outcome (i.e. whether or not the defendant failed
to appear) conditionally on the action that the judge ultimately decided to take (i.e. release on
recognizance or bail). Since the action that is taken by the judge may differ from that prescribed
by the decision rule, we do not always observe what would have happened under the rule. This
problem of offline policy evaluation (Dudı́k et al., 2011) is a specific instance of the fundamental
problem of causal inference.

To describe the estimation problem and our approach rigorously, we introduce some notation.
For concreteness, we frame our methodology in terms of the pretrial release example, but the
ideas that are presented here are common to many policy decisions. We denote the observed set
of cases by Ω={.xi, ai, ri/}, where xi corresponds to the features of a case, ai ∈{ROR, bail} is
the action that was taken by the judge, and ri ∈{0, 1} indicates whether the defendant failed to
appear at a scheduled court date. We write ri.ROR/ and ri.bail/ to mean the potential outcomes:
what would have happened under the two possible judicial actions. For any policy π, our goal
is to estimate the FTA rate under the policy:

V π = 1
|Ω|

∑
i

ri{π.xi/},

where π.x/ denotes the action that is prescribed under the rule. The key statistical challenge
is that only one of the two potential outcomes, ri = ri.ai/, is observed. Policy evaluation is a
generalization of estimating average treatment effects, namely, the average treatment effect can
be expressed as V πROR −V πbail , where πROR is the policy under which everyone is released and
πbail is defined analogously.

We investigated three approaches to estimating V π—response surface modelling (Hill, 2012),
inverse propensity weighting (Rosenbaum and Rubin, 1983b, 1984) and doubly robust estima-
tion (Cassel et al., 1976; Robins et al., 1994; Robins and Rotnitzky, 1995; Kang and Schafer,
2007; Dudı́k et al., 2011)—and found qualitatively similar results. Here we present the response
surface modelling approach for its relative simplicity. With response surface modelling, the idea
is to use a standard prediction model (e.g. logistic regression or random forests) to estimate the
effect on each defendant of each potential judicial action. The model estimates of these potential
outcomes are denoted by r̂i.t/, for t ∈{ROR, bail}. Our estimate of V π is then given by

V̂
π = 1

|Ω|
∑
i

[riI{π.xi/=ai}+ r̂i{π.xi/}I{π.xi/ �=ai}],

where I.·/ is an indicator function evaluating to 1 if its argument is true and to 0 otherwise. If
the prescribed action is in fact taken by the judge, then ri = ri{π.xi/} is directly observed and
can be used; otherwise we approximate the potential outcome with r̂i{π.xi/}. Table 4 illustrates
this method for a hypothetical example.

Response surface modelling implicitly assumes that a judge’s action is ignorable given the
observed covariates (i.e. that, conditionally on the observed covariates, those who are ROR are
similar to those who are not). Formally, ignorability means that

.r.ROR/, r.bail//⊥⊥a|x:

This ignorability assumption is typically unavoidable, and it is similarly required for methods
based on propensity scores (Rosenbaum and Rubin, 1983b, 1984; Cassel et al., 1976; Robins
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Table 4. Illustrative example of response surface modelling for
offline policy evaluation†

Proposed Observed Observed r̂(ROR) r̂(bail)
action π action a outcome r(a) (%) (%)

ROR ROR 0 20 10
Bail Bail 1 80 30
Bail ROR 1 90 70
ROR Bail 0 30 25
ROR ROR 0 20 15

†For each defendant, r̂.ROR/ and r̂.bail/ are model-based estimates
of the likelihood of FTA under each potential action. In cases where
the observed action equals the proposed action, the observed out-
come (FTA or not) is used to estimate the policy’s effect; otherwise,
the model-based estimates are used. Values in italics indicate which
values are used in each instance. The overall FTA rate under the
policy is estimated by averaging the italic values over all cases.

et al., 1994; Robins and Rotnitzky, 1995; Kang and Schafer, 2007; Dudı́k et al., 2011). We
examine this assumption in detail in Section 4.3 and find that our conclusions are robust under
a common model of unobserved heterogeneity.

To carry out this approach, we derive estimates r̂i.t/ via an L1-regularized logistic regression
(lasso) model trained on the second fold of our data. For each individual, the model estimates
the likelihood of FTA given all the observed features and the action that is taken by the judge.
In contrast with the rule construction that was described above, this time we train the model
on all cases (not just those for which the defendant ROR was by the judge) and include as a
predictor the judge’s action (ROR or bail); we also include the defendant’s race. Although it is
legally problematic to use race when making decisions, its use is acceptable—and indeed often
required—when evaluating decisions. Then, on the third fold of the data, we use the observed and
model-estimated outcomes to approximate the overall FTA rate for any decision rule. The model
was fitted with the glmnet package in R. The cv.glmnet method was used to determine the
best value for the regularization parameter λ with tenfold cross-validation and 1000 values of
λ. The model includes all pairwise interactions between the judge’s decision and defendant’s
features. We opt for the lasso instead of random forests for this prediction task because we
empirically found that the lasso yielded better predictions in this case.

Fig. 5 shows estimated ROR and FTA rates for a variety of pretrial release rules. Points on
the curves correspond to rules that were constructed via the lasso (the black curve) and random-
forest (the grey curve) models that use all 64 available features, as described above, for various
decision thresholds. The red points correspond to rules based on the simple scoring procedure
in Fig. 3, using just age and prior FTA, again corresponding to various decision thresholds.
For each rule, the horizontal axis shows the estimated proportion of defendants who were ROR
under the rule, and the vertical axis shows the estimated proportion of defendants who would
fail to appear at their court dates. The full black dot shows the status quo: 69% of defendants
ROR and a 13% FTA rate. Finally, the open circles show the observed ROR and FTA rates for
each of the 23 judges in our data who have presided over at least 1000 cases, sized in proportion
to their case load.

Fig. 5. illustrates three key points. First, simple rules that consider only two features—age and
prior FTAs—perform nearly identically to state of the art machine learning models (random
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Fig. 5. Evaluation of simple and complex decision rules (each point on the curves corresponds to decision
rules derived from a random forest ( ) or lasso ( ) risk model using all 64 features with varying
thresholds for release): , policies based on the simple risk score using just two features for all possible
release thresholds (the simple rules perform nearly identically to the random-forest models, and comparably
with the lasso models) , observed ROR and FTA rates for each judge in our data who presided over at
least 1000 cases, sized in proportion to their case load (in nearly every instance, the statistical decision rules
outperform the human decision maker)

forests and lasso regression) that incorporate all 64 available features. Second, the statistically
informed policies in the lower right quadrant all achieve higher rates of ROR and, simultane-
ously, lower rates of FTA than the status quo. In particular, by releasing defendants if and only
if their risk score is below 3.5, we expect to release 79% of defendants while achieving an FTA
rate of 13%. Relative to the existing policy, following this rule would result in detaining a third
fewer defendants while also slightly decreasing the overall FTA rate—from 13.3% to 13.0%.
Finally, for nearly every judge, there is a statistical decision rule that simultaneously yields both
a higher rate of release and a lower rate of FTA than the judge currently achieves. The statistical
decision rules consistently outperform the human decision makers.

Why do these statistical decision rules outperform the experts? Fig. 3 sheds light on this.
Each cell in the grid corresponds to defendants binned by their age and prior number of FTAs.
Under a rule that releases defendants if and only if their risk score is below 3.5, one would
release everyone to the left of the black line, and set bail for everyone to the right of the line.
The number in each cell shows the proportion of defendants in each bin who were actually
released, and the cell shading graphically indicates this proportion. Aside from the lowest risk
defendants, who have no prior FTAs, the likelihood of being released does not correlate strongly
with the estimated risk of flight. For example, the high risk group of young defendants with two
or more prior FTAs is released at about the same rate as the low risk group of older defendants
with one prior FTA. This low correlation between risk of flight and release decision is in part
attributable to extreme differences in release rates across judges, with some releasing more than
90% of defendants and others releasing just 50%. Whereas defendants experience dramatically
different outcomes based on the judge whom they happened to appear in front of, statistical
decision rules improve efficiency in part by ensuring consistency.
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Fig. 6. Robustness of estimated FTA rate for the simple decision rule (the FTA rate is estimated by applying
response surface modelling to each judge’s cases, where each point corresponds to a judge; though judges
have different criteria for releasing defendants—and the corresponding response models may thus differ—the
FTA rate of the decision rule is consistently estimated to be approximately 12–14%): , FTA rate of the
decision rule estimated on the full set of cases

4.3. Sensitivity to unobserved heterogeneity
As noted above, our estimation strategy assumes that the judicial action that is taken is ignorable
given the observed covariates. Under this ignorability assumption, we can accurately estimate
the potential outcomes. Judges, however, might base their decisions in part on information that
is not recorded in the data, which could in turn bias our estimates. For example, a judge, on
meeting a defendant, might surmise that their risk of flight is higher than we would expect
based on the recorded covariates alone and may accordingly require the defendant to post bail.
In this case, since our estimates are based only on the recorded data, we may underestimate the
defendant’s counterfactual likelihood of failing to appear if released.

We take two approaches to gauge the robustness of our results to such hidden heterogeneity.
First, on each subset of cases handled by a single judge, we use response surface modelling to
estimate V π. Each judge has idiosyncratic criteria for releasing defendants, as evidenced by the
dramatically different release rates across judges; accordingly, the types and proportion of cases
for which the policy π coincides with the observed action differ from judge to judge. This varia-
tion enables us to assess the sensitivity of our estimates to the observed actions {ai}. In particular,
if unobserved heterogeneity were significant, we would expect our estimates to vary systemati-
cally depending on the proportion of observed judicial actions that agree with the policy π. Fig.
6 shows the results of this analysis for the simple decision rule that is described in Fig. 3, where
each point corresponds to a judge. We find that the FTA rate of the decision rule is consistently
estimated to be approximately 12–14%. Moreover, some judges act in concordance with the de-
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cision rule in nearly 80% of cases; for this subset of judges, where our estimates are largely based
on directly observed outcomes, we again find that the FTA rate is estimated at around 12–14%.

As a second robustness check, we adapt the method of Rosenbaum and Rubin (1983a) for
assessing the sensitivity of estimated causal effects to an unobserved binary covariate. We specif-
ically tailor their approach to offline policy evaluation. At a high level, we assume that there
is an unobserved covariate u ∈ {0, 1} that affects both a judge’s decision (ROR or bail) and
also the outcome conditional on that action. For example, u might indicate that a defendant is
sympathetic, and sympathetic defendants may be more likely to be ROR and also more likely
to appear at their court proceedings. Our key assumption is that a judge’s action is ignorable
given the observed covariates x and the unobserved covariate u:

.r.ROR/, r.bail//⊥⊥a|x, u: .1/

There are four key parameters in this framework:

(a) the probability that u=1;
(b) the effect of u on the judge’s decision;
(c) the effect of u on the defendant’s likelihood of FTA if ROR;
(d) the effect of u on the defendant’s likelihood of FTA if bail is set.

Our goal is to quantify the extent to which our estimate of V π changes as a function of these
parameters.

Without loss of generality, we can write

Pr.a=ROR|u, x/= logit−1.γx +uαx/ .2/

for appropriately chosen parameters γx and αx that depend on the observed covariates x. We
note that randomness in judicial decisions may arise from a multitude of factors, including
idiosyncrasies in how judges are assigned to cases. Here αx is the change in log-odds of being
ROR when u=0 versus when u=1. For t ∈{ROR, bail}, we can similarly write

Pr{r.t/|u, x}= logit−1.βt
x +uδt

x/ .3/

for parameters βt
x and δt

x. In this case, δROR
x is the change in log-odds of failing to appear if

ROR when u=0 versus when u=1, and δbail
x is the corresponding change if bail is set.

Now, for any posited values of Pr.u= 1|x/, αx, δROR
x and δbail

x , we use the observed data to
estimate γx, βROR

x and βbail
x . We do this in three steps. First, by equation (2),

Pr.a=ROR|x/=Pr.u=0|x/ logit−1.γx/+Pr.u=1|x/ logit−1.γx +αx/:

The left-hand side of this equation can be estimated with a regression model fitted to the data.
For fixed values of Pr.u= 1|x/ and αx, the right-hand side is a continuous increasing function
of γx that takes values from 0 to 1 as γx goes from −∞ to ∞. There is thus a unique value γ̂x

such that the right-hand side equals P̂r.a= ROR|x/. Rosenbaum and Rubin (1983a) derived a
simple closed form solution for γ̂x, facilitating fast computation on large data sets, which we
omit for brevity.

Second, we use the fitted values of γx to estimate the distribution of u given the observed
covariates and judicial action. By Bayes’s rule,

Pr.u=1|a= t, x/= Pr.a= t|u=1, x/Pr.u=1|x/

Pr.a= t|x/

= Pr.a= t|u=1, x/Pr.u=1|x/

Pr.a= t|u=1, x/Pr.u=1|x/+Pr.a= t|u=0, x/Pr.u=0|x/
:
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With γ̂x, the Pr.a= t|u, x/ terms on the right-hand side can be estimated from equation (2), and
we can thus approximate the left-hand side.

Third, we have

Pr{r.t/=1|a= t, x}=Pr.u=0|a= t, x/Pr{r.t/=1|a= t, x, u=0}+Pr.u=1|a= t, x/

×Pr{r.t/=1|a= t, x, u=1}
=Pr.u=0|a= t, x/Pr{r.t/=1|x, u=0}+Pr.u=1|a= t, x/

×Pr{r.t/=1|x, u=1}
=Pr.u=0|a= t, x/ logit−1.βt

x/+Pr.u=1|a= t, x/ logit−1.βt
x + δt

x/:

The second equality above follows from the ignorability assumption that is stated in equation
(1), and the third equality follows from equation (3). The left-hand side can be approximated
by the quantity r̂x.t/ that we obtain via response surface modelling. Importantly, r̂x.t/ is a
reasonable estimate of Pr{r.t/= 1|a= t, x} even though it may not be a good estimate of rx.t/.
This distinction is indeed the rationale of our sensitivity analysis. Given our above estimate of
Pr.u=1|a= t, x/ and our assumed value of δt

x, the only unknown on the right-hand side is βt
x.

As before, there is a unique value β̂
t

x that satisfies the constraint.
With β̂

t

x in hand, we can now approximate the potential outcome for the action that is not
taken:

Pr{r.t̄/=1|a= t, x}
where t̄ ≡ROR if t ≡bail, and vice versa. Specifically, we have

P̂r{r.t̄/=1|a= t, x}= P̂r.u=0|a= t, x/ logit−1.β̂
t̄

x/+ P̂r.u=1|a= t, x/ logit−1.β̂
t̄

x + δ t̄
x/: .4/
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Fig. 7. Sensitivity of FTA estimates to unobserved heterogeneity (the grey bands (for the complex
rules using the lasso) and the error bars (for the simple rules) indicate minimum and maximum FTA es-
timates for a variety of parameter settings): in (a) we assume that α D log.2/ and consider all combina-
tions of p.u D 1/ 2 {0.1, 0.2,: : : , 0.9}, δROR 2 {� log.2/, 0, log.2/}, and δbail 2 {� log.2/, 0, log.2/}, where all
parameters are constant independent of x; in (b) we consider a more extreme situation, with α D log.3/,
δROR 2{� log.3/, 0, log.3/} and δbail 2{� log.3/, 0, log.3/}; the results are relatively stable in these parameter
regimes
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Finally, the Rosenbaum and Rubin estimator adapted to policy evaluation is

V̂
π
RR = 1

|Ω|
∑
i

[riI{π.xi/=ai}+ r̂i.āi/I{π.xi/ �=ai}],

where r̂i.āi/= P̂r{r.āi/=1|ai, xi} is computed via equation (4).
Fig. 7 shows the results of computing V̂

π
RR on our data in two parameter regimes. In the first

(Fig. 7(a)), we assume that α= log.2/ and consider all combinations of p.u=1/∈{0:1, 0:2, : : : ,
0:9}, δROR ∈{− log.2/, 0, log.2/} and δbail ∈{− log.2/, 0, log.2/}. All parameters are constant
independent of x. We thus assume that, holding the observed covariates fixed, a defendant with
u=1 has twice the odds of being ROR as a defendant with u=0, and that u can double or halve
the odds that a defendant will fail to appear. For each complex policy (i.e. one based on the
lasso), the grey bands show the minimum and maximum value of V̂

π
RR across all parameters in

this set; the error bars on the red points show the analogous quantity for the simple rules. In
Fig. 7(b) we consider a more extreme situation, with α= log.3/, δROR ∈{− log.3/, 0, log.3/} and
δbail ∈ {− log.3/, 0, log.3/}. We find that our estimates are relatively stable in these parameter
regimes. In the first case (α= log.2/) the estimated FTA rate for a given policy typically varies by
only half a percentage point. Even in the more extreme setting (α= log.3/), policies are typically
stable to about 1 percentage point. It thus seems that our conclusions are robust to potentially
unobserved heterogeneity across defendants.

5. The robustness of binary classification

Why is it that simple rules often perform as well as the most sophisticated statistical methods?
In part, it is because binary classification accuracy is relatively robust to error in the underlying
predictive model: an observation that we formalize in proposition 1 below.

To establish this result, we start by considering the prediction scores that are generated via
a standard statistical method—such as logistic regression trained on the full set of available
features—which we call the ‘true’ scores. As in linear discriminant analysis, we assume that the
true scores for positive and negative instances are normally distributed with equal variance:
N.μp, σ2/ and N.μn, σ2/ respectively. The homoscedasticity assumption guarantees that the
Bayes optimal classifier is a threshold rule on the scores. For scores that are estimated via logistic
regression, the normality assumption is reasonable if we consider the scores on the logit scale
rather than on the probability scale. Fig. 8(a) shows such scores for one of the UCI data sets:
heart-cleveland. We further assume that the process of generating simple rules—both limiting
the number of features and also restricting the possible values of the weights—can be viewed
as adding normal, mean 0 noise N.0, σ2

ε / to the true scores; Fig. 8(b) plots the distribution of
this noise for the same heart-cleveland data set as considered in Fig. 8(a). We estimate the noise
distribution by taking the difference between the simple and true scores. Thus, with simple rules,
instead of making classification decisions based on the true scores, we assume that decisions are
made in terms of a noisy approximation. Under this analytic framework, proposition 1 shows
that the drop in classification performance (as measured by AUC) can be expressed in terms of
the ‘true AUC’ (i.e. the AUC under the true scores) and γ =σ2

ε =σ2: the ratio of the noise to the
within-class variance of the true scores. In particular, we find that when the magnitude of the
noise is on a par with (or smaller than) the score variance (i.e. γ �1), then the AUC of the noisy
approximation is comparable with the true AUC.

Proposition 1. For a binary classification task, let Y be a continuous random variable that
denotes the prediction score of a random instance, and let Yp and Yn denote the conditional
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Fig. 8. Empirical estimation of noise added by simple rules: (a) empirical distribution of prediction scores,
on the logit scale, for positive ( ) and negative ( ) instances of one UCI data set (heart-cleveland),
generated via an L1-regularized logistic regression model; (b) empirical distribution of ε for select, regress
and round applied to the same data set

distributions of Y for positive and negative instances respectively. Suppose that Yp ∼N.μp, σ2/

and Yn ∼N.μn, σ2/. Then, for ε∼N.0, σ2
ε / and Ŷ =Y + ε,

AUCŶ =Φ
{

Φ−1.AUCY /√
.1+γ/

}
, .5/

where γ =σ2
ε =σ2, and Φ is the cumulative distribution function for the standard normal distri-

bution.

Proof. In general, AUC is equal to the probability that a randomly selected positive instance
has a higher prediction score than a randomly selected negative instance, and so AUCY =
Pr.Yp − Yn > 0/ (Su and Liu, 1993). Since Yp − Yn is normally distributed with mean μp −μn

and variance 2σ2,

Yp −Yn − .μp −μn/√
2σ

∼N.0, 1/:

Hence,

AUCY =Pr
{

Yp −Yn − .μp −μn/√
2σ

>−μp −μn√
2σ

}

=Φ
(

μp −μn√
2σ

)
,

where the last equality follows from symmetry of the normal distribution.
Now define Ŷp =Yp + ε, so Ŷp ∼N.μp, σ2 +σ2

ε /, with Ŷ n defined similarly. A short computa-
tion shows that

AUCŶ =Pr.Ŷp > Ŷn/
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Fig. 9. Theoretical analysis of simple rules: (a) theoretical change in AUC, as a function of γ; (b) distribution
of γ̂, estimated across all simple rules for 21 data sets with k D5 and M D3

=Φ
{

μp −μn√
.2σ2 +2σ2

ε /

}

=Φ
{

Φ−1.AUCY /√
.1+γ/

}
: �

Proposition 1 establishes a direct theoretical link between performance and noise in model
specification. To give a better sense of how the analytic expression for AUCŶ varies with AUCY

and γ, Fig. 9(a) shows this expression for various parameter values. For example, Fig. 9(a) shows
that, for AUCY = 90% and γ = 0:5, we have AUCŶ = 85%, i.e. if the amount of noise is equal
to half the within-class variance of the true scores, then the drop in performance is relatively
small.

Although connecting model performance to model noise, proposition 1 leaves unanswered
how much noise simple rules add to the underlying scores. This question seems difficult to
answer theoretically. We can, however, empirically estimate how much noise simple rules add
in the data sets that we analyse. To estimate γ =σ2

ε =σ2 for a specific simple rule on a given data
set, we first compute the average within-class variance of the true scores, where these scores are
generated via an L1-regularized logistic regression model. We estimate σ2

ε by taking the variance
of the measured noise. Fig. 9(b) shows the distribution of γ̂ across the 21 UCI data sets that
we consider, when using rules with five features and a coefficient range from −3 to 3, with an
average value of γ̂ = 0:22. This low empirically observed noise is in line with our finding that
such simple rules perform well on these data sets. In Appendix B.1, we further test the empirical
robustness of probabilistic risk predictions, in addition to binary classification, using simple
rules. We find that probabilistic estimates from our simple rules are comparable with those from
more complex statistical models.

6. Conclusion

Our work extends past research on improper linear models by formalizing and evaluating a
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simple method for constructing simple rules—rules that experts can apply mentally to guide
classification decisions. These simple rules take the form of a short checklist whose factors
have small integer weights. In 22 domains of varying size and complexity, the rules that are
produced by the select, regress and round method rivalled the accuracy of regularized logis-
tic regression models, although using only a fraction of the information. In a detailed anal-
ysis of pretrial release decisions, the simple rules outperformed human judges and matched
machine learning models that incorporated 64 features. (In Appendix C, we provide another
detailed demonstration of select, regress and round to assess credit risk and we reach similar
conclusions.)

Although our focus has been on the comparison between simple, statistically informed deci-
sion rules and more complex machine learning methods, our results are also in accordance with
an extensive literature comparing predictions by human experts with those based on statistical
models. Over 60 years ago, Meehl contrasted clinical methods for predicting behaviour, which
rely on professional judgement, with actuarial methods, which rely on statistically derived pat-
terns in data (Meehl, 1954). Subsequently, large meta-analyses have consistently demonstrated
that actuarial methods outperform clinical approaches, including in the context of predicting
criminal activity (Ægisdóttir et al., 2006), and even for judgements by the most experienced
professionals (see Goel et al. (2020) for a review). These results hold in the judicial context as
well, where clinical assessments of risk by judges are generally worse at predicting recidivism
than actuarial formulae (Gottfredson, 1999). Our analysis of a large data set of judicial decisions
provides further evidence that simple statistical models can outperform experts in a high stakes
domain.

Statistically informed rules, and simple checklists in particular, may result in improved
accuracy and consistency compared with unaided human decisions, but some open questions
remain. First, in many contexts, allowing human overrides of algorithmic decision aids may be
legally mandated, but such overrides can reduce accuracy (Krauss, 2004). In the criminal jus-
tice setting, past work indeed suggests that judges may not apply the recommendations of risk
assessments in a consistent manner (Christin, 2017; DeMichele et al., 2018; Stevenson, 2018).
It is important to strike an appropriate balance, allowing for human overrides in exceptional
instances while not degrading overall performance. Second, in contexts where an outcome vari-
able has a non-linear relationship with a set of predictors, the simple rules that are produced
by select, regress and round may not be sufficiently flexible to make useful predictions (for
example, in Fig. 12 in Appendix B.2 all linear models show poor performance on the chess-krvk
data set). One solution may be to allow additional model flexibility in select, regress and round,
though that approach could be at odds with the goals of transparency and interpretability.
Finally, it is unclear how well simple rules would work in domains with little training data, but
we also note that prediction tasks using small sample sizes remain challenging for more complex
methods.

Our results complement a growing body of work in statistics and computer science on inter-
pretable machine learning, in which sophisticated algorithms are used to create simple scoring
systems and rule sets (Ustun and Rudin, 2016; Wang and Rudin, 2015; Lakkaraju et al., 2016).
Although many of these rule construction methods offer great flexibility, they in turn require
considerable computational resources and expertise to carry out. In contrast, the method that we
propose can easily be carried out by ordinary practitioners using popular open-source software.
It has long been noted that statistical models tend to outperform unaided human judgement
(Einhorn and Hogarth, 1975; Green, 1977; Dawes, 1979; Gigerenzer and Goldstein, 1996; Waller
and Jones, 2011). We hope that providing practitioners with models that are both easy to apply
and easy to construct will increase their adoption and, ultimately, the quality of decisions.
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Appendix A: Description of University of California, Irvine, data sets

In Table 5 we provide a short description of the classification task that is associated with each of the 21
UCI data sets that we consider in Section 3.

Table 5. Description of each UCI data set

Data set Classification task

adult Predict whether income exceeds $50000 per year on the basis of census
data: also known as the ‘census income’ data set

annealing Classify steel types on the basis of various annealing properties
audiology-std Standardized version of the original audiology database first presented

in Bareiss et al. (1988)
bank The data are related to direct marketing campaigns (phone calls) of a

Portuguese banking institution: the classification goal is to predict
whether the client will purchase a term deposit

bankruptcy Predict bankruptcy on the basis of qualitative parameters measured by
experts

car Determine whether a car is ‘acceptable’ or not, on the basis of
quantitative attributes: originally presented in Bohanec and
Rajkovic (1988)

chess-krvk Chess end game data for white king and rook against black king: the
classification task is to determine whether white can win or not

chess-krvkp Chess end game data for king and rook versus king and pawn on square
A7 (usually abbreviated KRKPA7): the pawn on square A7 means
that it is one square away from queening; it is the king and rook’s turn
(white) to move; the goal is to classify whether white can win or not

congress-voting 1984 US congressional voting records: the task is to classify votes as
Republican or Democrat

contrac A subset of the 1987 National Indonesia Contraceptive Prevalence
Survey: the samples are married women who were either not pregnant or
do not know whether they were at the time of interview; the problem
is to predict the current contraceptive method choice (no use, long-
term methods or short-term methods) of a woman on the basis of her
demographic and socio-economic characteristics

credit-approval A collection of credit card applications: the task is to determine whether
the application was approved or not

ctg Measurements of fetal heart rate FHR and uterine contraction UC
features on cardiotocograms classified by expert obstetricians: the
task is to classify the fetal state as normal, suspect or pathologic

cylinder-bands Predict process delays known as ‘cylinder bands’ in rotogravure printing
dermatology The aim of this data set is to determine the type of eryhaemato- squamous

disease
german credit This data set classifies people described by a set of attributes as good or

bad credit risks
heart-cleveland The goal is to determine the presence of heart disease in the patients:

the outcome is integer valued from 0 (no presence) to 4; experiments
with the Cleveland database have concentrated on simply attempting
to distinguish presence (values 1, 2, 3 and 4) from absence (value 0)

ilpd This data set contains 416 liver patient records and 167 non-liver-patient
records: the data were collected from the north-east of Andhra Pradesh,
India

(continued)
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Table 5 (continued )

Data set Classification task

mammo Discrimination of benign and malignant mammographic masses based
on BI-RADS attributes and the patient’s age

mushroom From the Audobon Society field guide: mushrooms are described in
terms of physical characteristics; the task is to classify them as either
poisonous or edible

wine Using chemical analysis, determine the origin of wines
wine qual Two data sets are included, related to red and white wine samples, from

the north of Portugal: the goal is to model wine quality on the basis of
physicochemical tests
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Fig. 10. Mean absolute deviation of probability estimates based on simple rules compared with those from
a complex lasso model, averaged over all the UCI data sets: , [�1, 1]; , [�2, 2]; , [�3, 3];

, no rounding

Appendix B: Additional results for University of California, Irvine, data

B.1. Robustness of probability estimates with simple rules
To gauge the robustness of probability estimates that are derived from simple rules, we compare the mean
absolute deviation of those estimates with the predictions from a lasso model that uses all available features.
For each integer score that is produced by a select, regress and round model, we compute the corresponding
probability estimate for the simple rule by considering all cases in the training set with that score, and then
computing the empirical frequency of the outcome of interest, as detailed in Section 4.1. As shown in
Fig. 10, using five features and rounding coefficients to the interval [−3, 3], probability estimates by using
select, regress and round deviate from the lasso predictions by about 6 percentage points on average across
the UCI data sets.
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Fig. 12. Comparison of performance of AUC for each of the 21 UCI data sets, for simple rules with vari-
ous k and M parameters (�, logistic; �, lasso; �, random forests; , coefficient range [�1, 1]; ,
coefficient range [�2, 2]; , coefficient range [�3, 3]; , no rounding): (a) adult; (b) annealing; (c)
audiology-std; (d) bank; (e) bankruptcy; (f) car; (g) chess-krvk; (h) chess-krvkp; (i) congress-voting; (j) contrac;
(k) credit-approval; (l) ctg; (m) cylinder-bands; (n) dermatology; (o) german credit; (p) heart-cleveland; (q) ilpd;
(r) mammo; (s) mushroom; (t) wine; (u) wine qual

B.2. Detailed results for individual data sets
Here, we disaggregate the results in Section 3.1 to compare simple rules and complex models on each of
the 21 UCI data sets. First, Fig. 11 compares the performance of select, regress and round by using up to
five features and rounding to the nearest integer in the range [−3, 3] (i.e. k =5 and M =3) against each of
the three benchmark models for each individual data set. In Fig. 11, each point represents a data set, and
the corresponding horizontal and vertical positions show the cross-validated AUC of the complex models
and simple rules respectively. For the logistic regression and lasso comparisons, all points are very close
to the diagonal, indicating that select, regress and round performs on a par with these complex models for
each individual data set. In contrast, we see that a random-forest model outperforms simple rules in many
situations. Next, Fig. 12 provides a more detailed comparison by replicating Fig. 1 for each individual data
set. We observe that, in general, model comparisons on individual data sets are similar to those that average
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Fig. 13. Comparison of performance of AUC for each of the 21 UCI data sets, for simple rules with var-
ious k and M parameters (compared with Fig. 12, this figure shows the number of binarized features with
non-zero coefficients on the horizontal axis) ( , coefficient range [�1, 1]; , coefficient range [�2, 2];

, coefficient range [�3, 3]; , no rounding): (a) adult; (b) annealing; (c) audiology-std; (d) bank;
(e) bankruptcy; (f) car; (g) chess-krvk; (h) chess-krvkp; (i) congress-voting; (j) contrac; (k) credit-approval;
(l) ctg; (m) cylinder-bands; (n) dermatology; (o) german credit; (p) heart-cleveland; (q) ilpd; (r) mammo; (s)
mushroom; (t) wine; (u) wine qual

over all data sets. Finally, in Fig. 13 we similarly plot performance but replace the horizontal axis with
the number of non-zero coefficients instead of features. A model can have more non-zero coefficients than
features, because a categorical variable with more than two categories will yield more than two non-zero
coefficients after each category has been binarized. For example, the rule that is presented in Fig. 3 has
two features, age and prior FTAs, but five non-zero coefficients.

Appendix C: Alternative case-study with german credit data

We illustrate select, regress and round on the german credit data. This data set consists of 1000 cases
labelled as having either good or bad credit. Each row is described by 20 features: seven continuous and
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Fig. 14. Receiver operating characteristic curve comparing performance of a complex ( , random
forest) model that uses all 20 available features to predict whether an individual has ‘good’ or ‘bad’ credit,
versus the simple rule derived by using select, regress and round ( ) as shown in Table 6: the curve
for simple rules is shown as points, since a simple rule results in discrete cut-offs; the complex model and
simple rule achieve AUCs of 0.80 and 0.78 respectively; whereas a decision maker would typically select
a threshold based on various costs given a risk score, our results show that a simple rule achieves almost
identical performance compared with a complex model for all possible threshold values, with the additional
benefit of being transparent and interpretable

C
ou

nt
s

Fig. 15. Distribution of the continuous feature duration in months in the training data: , values at the 33rd
and 67th percentiles, which are used to discretize the continuous feature into three bins of approximately
equal size

13 categorical; a full description of the data set can be found at the UCI repository. The goal is to estimate
the risk of default (labelled as ‘bad’ credit) for each case. We split the data randomly into 900 cases for
training and 100 cases for evaluation. We use a single 9:1 split for simplicity here, but note that our main
results that are reported in Fig. 1 were obtained via tenfold cross-validation.

As a benchmark, we first fit a random-forest model with 1000 trees on the training data, using all 20
available features. The result is a complex model that achieves 0.80 AUC on the test set. A full receiver
operating characteristic curve for the complex model is presented as a blue curve in Fig. 14. According to
the steps that were presented in Section 2, we build a simple rule to score the risk of default for a given
case. As described previously, we discretize continuous features into three bins of approximately equal
sizes to prioritize simplicity. This is achieved by discretizing each continuous feature at the 33rd and 67th
percentile in the training data, and applying the same cut-offs to the test data. For example, Fig. 15 shows
the distribution of the duration in months feature in the training data, which represents the number of
months that an applicant has lived at their current address. The 33rd and 67th percentile of this feature
are 12 and 24 respectively: hence the feature is discretized at these points for both the training and the test
data. In detail, we perform the following steps.
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Table 6. Simple rule for determining the risk of default, derived by
using select, regress and round on the german credit data set with
k D5 and M D3†

Selected feature Lasso Select,
coefficient regress

and round
score

Checking account status
Less than 200 DM 0.3 1
200 DM or above 0.92 2
No checking account 1.56 3

Months lived at current address
Between 12 and 24 months −0:39 −1
24 months or more −1:02 −3

Credit history
All credits at this bank paid back −0:36 −1
Delayed payments in the past 0.56 1
Unpaid credits existing (not at this bank) 1.23 3

Savings account or bonds
100�value < 500 DM 0.1 0
500�value < 1000 DM 0.67 2
1000 DM�value 1.002 2
No known savings account 0.99 2

Guarantors
Coapplicant −0:34 −1
Guarantor 1.35 3

†Variables with a zero lasso coefficient have been omitted.

Step 1: select—from the full set of 20 features, we select k = 5 features via forward stepwise selection.
The features that are selected, in order, are checking account status, months lived at current address,
credit history, savings account/bonds, and guarantors.
Step 2: regress—using the five selected features, we train an L1-regularized (lasso) logistic regression
model to predict whether the credit is good (0) or bad (1) for each case. The regularization parameter
λ is chosen via tenfold cross-validation. Following Friedman et al. (2010), we explore a regularization
path with 1000 values of λ spaced evenly on a log-scale in the range .λmin, λmax/, where λmin =10−4 and
λmax is set to 0.141, the minimum value such that all coefficients are regularized to 0. We find that λÅ, the
value of λ that maximizes cross-validated performance, is 0.004. The second column of Table 6 shows
the fitted lasso model coefficients.
Step 3: round—we rescale the coefficients of the model from step 2 to be in the range [−3, 3] (e.g. M =3),
and then round the rescaled coefficients to the nearest integer. The final scores corresponding to each
variable are listed in the third column of Table 6.

Fig. 14 shows a comparison of receiver operating characteristic curve performance on the held-out test
set, between the random-forest model (blue) and our simple rule in Table 5 (red). In practice, a decision
maker would typically select a threshold based on various costs to determine which loan applications to
approve or reject. However, our results demonstrate that, across all threshold values, a simple, transparent
rule achieves nearly identical performance when compared with a considerably more complex model.

This case-study and all the results can be replicated by running the case study.R script that is provided
in our public code repository: https://github.com/stanford-policylab/simple-rules. In
addition, we have made it easy to generate simple rules for any combination of parameters for each of the
21 UCI data sets, by providing an R markdown file that can be run by using freely available software.
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