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Background: Accounting for race and ethnicity in esti-
mating disease risk may improve the accuracy of pre-
dictions but may also encourage a racialized view of
medicine.

Objective: To present a decision analytic framework
for considering the potential benefits of race-aware
over race-unaware risk predictions, using cardiovascular
disease, breast cancer, and lung cancer as case studies.

Design:Cross-sectional study.

Setting: NHANES (National Health and Nutrition
Examination Survey), 2011 to 2018, and NLST (National
Lung Screening Trial), 2002 to 2004.

Patients:U.S. adults.

Measurements: Starting with risk predictions from clini-
cally recommended race-aware models, the research-
ers generated race-unaware predictions via statistical
marginalization. They then estimated the utility gains
of the race-aware over the race-unaware models,
based on a simple utility function that assumes con-
stant costs of screening and constant benefits of dis-
ease detection.

Results: The race-unaware predictions were substan-
tially miscalibrated across racial and ethnic groups
compared with the race-aware predictions as the
benchmark. However, the clinical net benefit at the
population level of race-aware predictions over

race-unaware predictions was smaller than ex-
pected. This result stems from 2 empirical pat-
terns: First, across all 3 diseases, 95% or more of indi-
viduals would receive the same decision regardless
of whether race and ethnicity are included in risk
models; second, for those who receive different deci-
sions, the net benefit of screening or treatment is rel-
atively small because these patients have disease
risks close to the decision threshold (that is, the theo-
retical “point of indifference”). When used to inform
rationing, race-aware models may have a more sub-
stantial net benefit.

Limitations: For illustrative purposes, the race-aware
models were assumed to yield accurate estimates of
risk given the input variables. The researchers used a
simplified approach to generate race-unaware risk
predictions from the race-aware models and a simple
utility function to compare models.

Conclusion: The analysis highlights the importance
of foregrounding changes in decisions and utility
when evaluating the potential benefit of using race
and ethnicity to estimate disease risk.
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S tatistical models are used to estimate individual
risk for many of the most prevalent and deadly dis-

eases faced by Americans. These risk estimates are
often used to identify persons who would benefit
from interventions, such as screening or prophylactic
treatment (for example, pharmacotherapy or lifestyle
changes), that would allow them to better manage
their health and slow or halt the progression of their
condition. However, screening and treatment come with
potential harms and costs. Consequently, the medical
community typically targets such interventions at those
whose predicted risk for developing the disease is
above a certain threshold. These thresholds are usually
set at the level of risk above which the expected

benefits exceed the expected harms and costs—that is,
the “point of indifference.”

Disease risk predictions are often produced using
variables such as age, gender, relevant biomarkers,
and lifestyle factors. There is debate over whether an
individual’s race and ethnicity should additionally be
included to account for observed disparities in disease
incidence and mortality rates across demographic sub-
groups in the United States (1, 2). Past work has dem-
onstrated that including race and ethnicity improves
the accuracy of clinical prediction models and that their
omission could exacerbate disparities in health out-
comes (3–10). Other work has argued that race and
ethnicity can serve as a useful proxy for exposure to
systemic racism, thereby offering a way to mitigate dis-
crimination in health care (11). However, concern and
criticism persist about the use of race and ethnicity in
estimating disease risk (12–14). Their inclusion in pre-
dictive models may, for instance, inadvertently rein-
force pernicious attitudes of biological determinism or
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lead to greater stigmatization of already marginalized
persons. In part for these reasons, race-aware esti-
mates of glomerular filtration rate have largely been
replaced by a “race-free” equation (15), both to avoid
race-based predictions and to address concerns that
a race-aware model may deprioritize Black patients for
kidney transplantation (16–19). Similarly, the American
Heart Association recently released race-unaware equa-
tions for predicting risk for cardiovascular disease events
(PREVENT [Predicting Risk of cardiovascular disease
EVENTs]), and researchers have released race-unaware
calculators for estimating risk in other conditions (20–23).

In this work, we present a decision analytic frame-
work for considering both the statistical and clinical
utility of race and ethnicity in disease risk estimation.
This approach considers not only improvements in ac-
curacy from the use of race and ethnicity but also the
extent to which those improvements affect decisions
and utility. We apply this framework to cardiovascular
disease, breast cancer, and lung cancer as illustrative
case studies.

METHODS

Overview
To assess the value of race and ethnicity in esti-

mating disease risk, we compare statistical predic-
tions and clinical net benefit of race-unaware versus
race-aware risk models for breast cancer, lung cancer,
and cardiovascular disease. For each disease, we use a
clinically recommended race-aware risk model to obtain
risk estimates for a sample of individuals. We then con-
vert the race-aware risk estimates to race-unaware risk
estimates; we do so via statistical marginalization of race
and ethnicity for simplicity. We then compare how
clinical decisions would change using race-aware ver-
sus race-unaware risk estimates and quantify how these
changed decisions translate into utility gains or losses
for different racial and ethnic groups under a shared
decision-making context and, separately, a rationing
context. For illustrative purposes, we assume the race-
aware models yield accurate estimates of risk given the
input variables.

Data Sources
Our analysis of cardiovascular disease and breast

cancer is based on publicly available data from NHANES
(National Health and Nutrition Examination Survey),
2011 to 2018 (24), a cross-sectional survey representa-
tive of the community-dwelling U.S. population that
combines interview responses with laboratory data to
provide insight into health and nutrition. We restricted
our samples to adults clinically eligible for each disease
model (Appendix, available at Annals.org).

Our analysis of lung cancer is based on cross-
sectional data from NLST (National Lung Screening
Trial) (25), a randomized controlled trial done between
August 2002 and April 2004 to assess whether low-
dose computed tomography screening reduces lung

cancer mortality relative to chest radiography among
persons at high risk. Data on the approximately 54000
participants included demographics, medical history,
and lifestyle factors relevant to the development of
lung cancer. Approximately 90% of NLST participants
identified as non-Hispanic White, although these
data have been used to investigate racial and ethnic
disparities in lung cancer (26, 27). We reweighted par-
ticipants to match the joint age, gender, and race distri-
bution of Americans between age 40 and 80 years (28)
(Appendix).

Risk Predictions
The Table describes the risk models we used,

including covariates, risk thresholds, and the clinical
decisions the models inform (Appendix).

The reference risk models are, by design, race-
aware. In practice, the preferred approach to gener-
ate race-unaware models is to train new models that
do not include race and ethnicity as inputs and to add
other factors correlated with race and ethnicity that
might improve the performance of race-unaware pre-
dictions (20, 21). However, because of data limitations,
we could not retrain race-unaware models in this way.
Instead, we estimated race-unaware models by taking
a weighted average of the race-aware risk predictions,
where the weights equal the population proportions of
each group conditional on the nonrace risk factors. For
example, to obtain the race-unaware lung cancer risk
estimate for an individual, we used the Lung Cancer
Risk Assessment Tool model to first produce 4 risk esti-
mates, varying only race (that is, White, Black, Hispanic,
or Asian) and holding all else constant. We then took a
weighted average of these 4 race-aware predictions to
obtain a race-unaware risk estimate, a well-established
statistical technique for removing variables from risk
models (Appendix). These race-unaware models are
intended only to illustrate broad statistical principles
and are not intended for clinical use.

TheUtility Framework
To quantify the value of using race-aware risk scores

to make screening and treatment recommendations, we
adopt a utility framework where both costs and gains
in health are expressed on a common scale. For each
disease, we assume a constant cost of intervention
(that is, screening or treatment) for those deemed high-
risk. This cost encapsulates a wide range of monetary
and nonmonetary considerations, such as the direct cost
of screening or treatment and indirect costs like taking
time off from work. We further assume a constant bene-
fit for detecting disease across individuals, due to early
detection and long-term treatment of the disease. This
simplification assumes that the benefit of appropriate
intervention (that is, intervening when the individual truly
has the disease) does not vary by age, race, or other
attributes and allows us to highlight broad patterns in a
base case on which to expand our analysis.
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Figure 1 shows the structure of the utility function.
We set the utility of “no intervention” to 0, where indi-
viduals incur neither costs nor benefits of intervention.
We normalize the benefit of appropriate intervention
for each individual to 1 and assume a uniform cost c of
intervening. Based on this framework, the optimal
policy is to intervene if, and only if, a patient’s pre-
dicted disease risk r exceeds a decision threshold t
(the point of indifference), where the expected benefits
of intervention equal the costs. This decision threshold
implicitly accounts for the relative weights of a false-
positive versus a false-negative prediction. For exam-
ple, setting a risk threshold of 7.5% for cardiovascular
disease treatment suggests that treating a patient with
a statin whose risk is exactly 7.5% results in no utility
gain because, at this level of risk, the benefits of ther-
apy are nullified by the costs, burdens, and harms.

As in decision curve analysis (44–46), knowing the
optimal threshold for a decision yields information on
the relative costs and benefits of interventions. With the
normalization in Figure 1, the implied value of c is pre-
cisely the threshold t (Appendix). For a given screening
strategy, we call the resulting utility the “net benefit” of
that strategy. To quantify the gains in net benefit of using
a race-aware model over a race-unaware model to
make a decision for an individual, we subtract the race-
unaware utility from the race-aware utility.

Role of the Funding Source
Funders did not play a role in the design, conduct,

or analysis of this study or in the decision to submit
the manuscript for publication.

RESULTS

Miscalibration of Race-Unaware Risk Predictions
The race-unaware predictions that we developed

exhibit substantial miscalibration across racial and eth-
nic groups (Figure 2, top). Assuming that the original,
race-aware models yield accurate risk estimates, we

find the race-unaware models underestimate risk for
cardiovascular disease and lung cancer for Black individ-
uals. In contrast, race-unaware models overestimate risk
for breast and lung cancer for Asian individuals and simi-
larly overestimate risk for lung cancer for Hispanic indi-
viduals. For White individuals, the predicted risks were
similar between the race-aware and race-unaware mod-
els for all 3 diseases. Miscalibrated predictions can result
in misclassifications that lead to inappropriately recom-
mending screening or treatment of low-risk patients or
failing to recommend screening or treatment of high-
risk patients. The observed miscalibration of the margi-
nalized race-unaware models we consider may not
generalize to race-unaware models that are developed
de novo, particularly if other covariates are included that
correlate with race and ethnicity (20, 21). Nevertheless,
similar patterns of miscalibration have been found previ-
ously for race-unaware disease models that were fitted
directly (5).

Utility Gains FromRace-Aware Predictions
Assuming Constant Benefits

We start by considering the added value of race-
aware predictions under our base-case utility model,
where the benefit of appropriate intervention is con-
stant across individuals. The overall clinical benefits of
race-aware risk predictions in this base case were not
as large as one might expect given the observed mis-
calibration of the race-unaware predictions. We find
that the race-aware models yield an increase in net
benefit of approximately 2.0 per 10000 individuals for
cardiovascular disease, 0.49 per 10000 individuals for
breast cancer, and 1.76 per 10000 individuals for lung
cancer. In Figure 3, we show the results of this analysis
by race and ethnicity. To contextualize these results,
the baseline utility (that is, the net benefit from using
a race-unaware model relative to a policy of never
intervening) is 388 per 10000 individuals for cardio-
vascular disease, 11 per 10000 for breast cancer,
and 158 per 10000 for lung cancer. (See Appendix

Table. Risk Models, Inputs, Thresholds, and Decisions for Each Disease

Disease Risk Model Model Inputs Risk Threshold Decision Considered

Cardiovascular disease U.S.-derived 2013 ASCVD pooled
cohort equations (29, 30)

Sex, race and ethnicity, age, diabetes sta-
tus, smoker status, untreated and treated
systolic blood pressure, total cholesterol
level, high-density lipoprotein choles-
terol level

7.5% (31) Recommendation of
moderate-intensity
statin therapy (31)

Breast cancer Breast Cancer Risk
Assessment Tool (32–37)

Age, race and ethnicity, number of first-
degree relatives with breast cancer*
(38), age at menarche, age at first live
birth, history of breast biopsy*, and
atypical hyperplasia*

1.67% (39, 40) Recommendation of
tamoxifen and
raloxifene as che-
moprevention
(39, 40)

Lung cancer Lung Cancer Risk
Assessment Tool (41, 42)

Gender, race and ethnicity, age, smoking
history, family history of lung cancer,
body mass index, highest education
level attained, and history of other
diseases*

2.0% (41, 43) Recommendation of
CT lung cancer
screening (41, 43)

ASCVD¼ atherosclerotic cardiovascular disease; CT¼ computed tomography.
* Further detail is the Appendix (available at Annals.org).
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Figure 1, available at Annals.org, for baseline utility
results per disease by race and ethnicity.) For each
disease, the subgroups that have the largest gains in
net benefit from race-aware risk estimates are those
for whom the race-unaware miscalibration is worst.
For breast cancer, Asian individuals benefit the most;
for cardiovascular disease, Black individuals benefit the
most; and for lung cancer, Hispanic individuals benefit
the most. Across diseases and race subgroups, race-
aware predictions lead to improvements in net benefit
of at most 17 per 10000 individuals.

Given that the race-unaware models are starkly
miscalibrated, it is perhaps surprising that the race-
aware models do not yield larger utility gains. Two fac-
tors help explain this phenomenon. First, as shown in
the bottom rows of Figures 2 and 3, including race
shifts predictions considerably for many patients, but
most receive the same recommendation under a race-
aware model as under a race-unawaremodel—because
recommendations change only for the relatively few
patients close to the decision threshold. The percent-
age who receive the same recommendation under
both models is 98% for cardiovascular disease, 97% for
breast cancer, and 95% for lung cancer. Most patients
thus accrue no gains from using a race-aware model.
Second, for the small number of patients near the
threshold who do receive different recommenda-
tions under the 2 risk models, the utility gains are
modest. To see this, note that those individuals with
risk estimates equal to the decision threshold should,
in theory, be completely indifferent between receiving
and not receiving the intervention—precisely because
the threshold was chosen to be the point of indiffer-
ence. Similarly, those near the threshold should be
largely indifferent between the alternatives.

Utility Gains FromRace-Aware Predictions
AssumingHeterogeneous Benefits

The results above assume, for simplicity, that the
benefit of appropriate intervention is constant across

individuals. For example, we have implicitly assumed
that the value of appropriate treatment of older people
is the same as that of younger people, even though
treatment of younger people could lead to more life-
years gained. In theory, our race-unaware models could
systematically underidentify persons who would benefit
the most from treatment. However, in the Appendix, we
consider age-related heterogeneity in utility (Appendix
Figure 2, available at Annals.org) and find qualitatively
similar results to the base case.

There may also be heterogeneity in the utility func-
tion based on factors that relate to race and ethnicity.
For example, certain racial or ethnic groups may ex-
hibit lower responsiveness to treatment in later stages
of disease or accrue greater utility from detecting or
recommending prophylaxis before disease onset. As a
result, there may be group-specific tradeoffs between
costs of screening and benefits of detection—tradeoffs
that can be better accommodated by race-aware deci-
sion making. In the Appendix, we trace out these group-
specific tradeoffs for each disease (Appendix Figure 3,
available at Annals.org). If sizable group-specific differ-
ences exist in the benefit of intervention, the value of a
race-aware approach may be larger than what we find
here (48).

Utility Gains FromRace-Aware Predictions
Under Conditions of Scarcity

Finally, the empirical patterns discussed above may
not hold under conditions of scarcity, where prediction
models are used for efficient rationing of limited health
care resources. In such circumstances, decision thresh-
olds are determined not by the point of indifference but
by capacity and may indeed be far from the point of
indifference (for example, in organ transplantation).
To demonstrate, we consider a hypothetical example
where severe resource constraints mean that only
individuals with risk scores above K%may receive the
appropriate intervention for each disease (such as

Figure 1. The costs and benefits of intervention.

Intervention

No intervention

No disease

Disease
1 – c

– c

0

The figure shows the structure of the base-case utility function used in the subsequent analysis. We normalize the benefit of appropriate intervention to
equal 1 unit, with c denoting the cost of intervention.
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pharmacotherapy for cardiovascular disease and breast
cancer, or a computed tomography scan for lung
cancer), even though many individuals with risk scores
below K% might benefit from the intervention. Using
our base utility function assuming constant benefit,
Figure 4 shows the resulting group-specific gains
in net benefit for various values of the screening thresh-
old, demonstrating that gains from using race-aware
predictions increase substantially under conditions of
scarcity (unless K is very large).

In this hypothetical scenario, race-aware prediction
models for cardiovascular disease and lung cancer
would appropriately identify and prioritize higher-risk
Black patients and deprioritize lower-risk Hispanic,
Asian, and White patients for intervention. For example,
if we imagine that only individuals with a cardiovascular
disease risk score greater than 12%may receive statins—
which corresponds to the riskiest 25% of individuals—
using a race-aware risk model for Black patients
would result in a net benefit of approximately 80 per
10000 individuals, over a baseline net benefit of
approximately 533 per 10000 for the race-unaware
model. This pattern is driven by the fact that, under
scarcity, those who receive different recommendations

are farther from their point of indifference and thus
have larger utility gains from reclassification. In addi-
tion, given the distributions of risk in this example,
more individuals receive screening recommendations
that differ between the race-aware and race-unaware
models.

DISCUSSION

In the shared decision-making context, our results
suggest that race-aware risk models yield smaller
gains in net benefit over race-unaware models than
the improvement in predictions might suggest. This
finding stems from 2 patterns in the data: First,
although the race-aware model changes predictions for
all patients, decisions often change for only a small frac-
tion of patients; second, among those who do receive
different decisions, the net value of intervention is rela-
tively small because their disease risk is typically close to
the decision threshold—which, in the shared decision-
making case, is typically set at the theoretical point of
indifference.

However, circumstances exist under which using
race-aware models may yield greater net benefit, most
notably in rationing contexts. Under rationing, the

Figure 2.Assessing the effects of miscalibration of race-unaware risk estimates on screening and treatment recommendations.
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Top. Calibration plots for cardiovascular disease, breast cancer, and lung cancer, showing race-unaware risk predictions plotted against race-aware risk
predictions for each disease. The line y¼ x denotes the line of perfect calibration (shown by a heavy dashed black line). The scales of the x- and y-axes
differ across diseases because of differences in the risk distributions and thresholds for each disease. Across all 3 diseases, racial minorities have more
miscalibration in race-unaware predictions than White individuals. The solid black line marks the recommended screening or treatment threshold for
each disease. Bottom. Scatter plots showing race-unaware risk plotted against race-aware risk. Each point represents an individual in the data. The
unshaded regions indicate individuals who would receive a different screening/treatment recommendation under the race-aware model than they
would under the race-unaware model. Individuals in the shaded region receive the same recommendation under each model.
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decision threshold is not determined by the point of
indifference but by capacity—and may be far from the
point of indifference. Reclassifying patients across a
decision threshold far from the point of indifference
may be quite consequential. Moreover, the additional
net benefit is preferentially directed to racial and eth-
nic minorities in our examples, such that using race-
aware models is anticipated to reduce disparities.
Although this pattern need not always hold, it would
tend to when racial and ethnic subgroups are at higher
risk for adverse outcomes, a common scenario in many
clinical domains (49). The specific risk models we con-
sidered are intended for shared decision making, not
rationing, but rationing is ubiquitous in health care and
prediction models are increasingly proposed to allocate
resources. For example, during the COVID-19 pan-
demic, many states developed race-aware algorithms
to allocate scarce therapeutics, under the principle of
“equal treatment for equal risk” (50, 51).

In evaluating the use of race and ethnicity in clinical
risk algorithms, our work highlights the importance of
foregrounding not just improvements in accuracy but
changes in decisions and utility. Past work has largely
focused on comparing the accuracy of race-unaware
and race-aware models (10, 21–23, 47). However, as evi-
denced by our results with all 3 diseases, improvements
in accuracy do not always translate to commensurately
large changes in decisions and benefits. Other work that
has measured the effects of race-aware predictions on
decisions has stopped short of considering utility (2, 5,
6). Given the known costs of screening and treatment,

our work shows a need to additionally examine the gains
in net utility from changed decisions. Last, our research
adds to previous work highlighting the important—and
often overlooked—ethical distinctions in shared decision
making versus rationing, because the latter gives rise to
fairness concerns less relevant to the former (52). In
particular, more care may be needed when omitting
(or including) race and ethnicity for models used for
rationing, given the larger consequences of risk reclas-
sification in that context. Recent guidelines on model
development further discuss these distinctions (53).

Our analyses are intended to illustrate general
principles and should not be understood as specific
recommendations for modeling risk in the 3 diseases
examined. In particular, our work is subject to several
important limitations. First, our analysis assumes that
the clinically recommended race-aware models we
consider yield accurate estimates of risk given the input
variables—an assumption that lets us evaluate the rela-
tive performance of the derived race-unaware models.
These race-aware models might have systematic inac-
curacies (54), although we note that they were trained
on widely used data with standard statistical methods.
Moreover, our results showing statistical gains from
using race-aware over race-unaware models are con-
sistent with the general principle that adding prognos-
tic information improves model performance (3, 4).
Second, we have primarily considered per capita utility
gains, but one could alternatively consider aggregate
population-level utility benefits, which are considerably
larger. Third, our results might not apply where the

Figure 3. The per capita utility gain—assuming constant benefit across individuals—of a race-aware risk model over a race-unaware
model, disaggregated by race and ethnicity, and the percentage of individuals with different decisions under each model.
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Top. The per capita utility gains by race and ethnicity group from using a race-aware model over a race-unaware model for making screening and treat-
ment recommendations. The vertical line denotes the average gains across the entire population. Minority racial and ethnic groups consistently have
the largest gains. This pattern is primarily driven by the fact that race-unaware risk predictions will most closely reflect the risk of the majority group,
which in this case is White individuals. Bottom. The percentage of individuals within each race and ethnicity group that would receive different recom-
mendations under race-aware and race-unaware models. In nearly every case, only a small proportion would receive different recommendations. The
vertical line denotes the percentage of individuals with changed decisions across the entire population.
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apparent disparity in disease risks is suspected to arise
from label bias—for example, arising from a difference
in diagnostic labeling or outcome ascertainment rather
than a true disparity in disease incidence or outcome
(55). In the presence of label bias, using a race-aware
model might in fact exacerbate statistical biases (55).
Fourth, we obtained race-unaware risk estimates by
taking a weighted average of race-aware risk estimates
for an individual. In practice, race-unaware risk estimates
would be obtained by training a separate race-unaware
model. Finally, our analysis is contingent on the specific
utility framework that we use to evaluate screening
and treatment decisions. In particular, for simplicity we
assumed a single decision threshold even though 2 or
more thresholds might be appropriate for identifying
groups at low, medium, and high risk, for example
(46). Having more decision points might increase the
number of patients reclassified.

At the heart of the debate over using race-unaware
versus race-aware models to estimate disease risk is the
goal of mitigating racial and ethnic disparities in health
outcomes. Our work does not attempt to uncover the
cause of such disparities in outcomes across racial and

ethnic groups, but any efforts to do so should consider
racism as a possible cause (56, 57). Concern also exists
about the limited efficacy of risk predictions—either
race-aware or race-unaware—for mitigating disparities
in health outcomes apart from disease incidence. For
example, Black women in the United States have lower
incidence rates of breast cancer thanWhite women but
have a mortality rate 40% higher, highlighting the
limitations of focusing solely on disease risk for miti-
gating disparities in outcomes that are downstream
from screening, such as mortality rates (58).

Our main result—that large statistical gains from
race-aware prediction may lead to only modest gains
in utility—is based on broad principles, and so it likely
extends to various contexts in medicine and beyond
where using race and ethnicity in predictive models is
contested. However, when used to inform rationing,
race-aware models may be much more beneficial than
when used in a shared decision-making context. We
believe our work provides a widely adaptable frame-
work for evaluating the consequences of including or
excluding race and ethnicity from predictions. However,
we also emphasize that the specifics in each case need

Figure 4. The effects of race-aware predictions under conditions of scarcity.
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who would receive different recommendations across the 2 models. This percentage includes individuals who would be recommended for an interven-
tion under a race-aware model but not a race-unawaremodel, as well as the reverse. The solid black line denotes the standard recommended screening
threshold for each disease. These results collectively show that Black individuals would have considerable gains in utility from using race-aware predic-
tions under conditions of scarcity. In addition, we see that using a race-aware model for breast cancer would result in minimal gains in utility across
groups. This result is primarily driven by relatively small gains in net benefit from using a race-aware model under normal circumstances.
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to be considered. We hope that our analytic framework
helps researchers, practitioners, and policymakers better
understand and balance the underlying tradeoffs of
using race and ethnicity when estimating risk.
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APPENDIX: DATA, RISK PREDICTIONS, AND

UTILITY ANALYSES

Data Samples for EachDisease
Cardiovascular Disease
For cardiovascular disease, we restricted our data sam-
ple from NHANES to nonpregnant adults between the
ages of 40 and 79 years who had never taken statins or
had any of the following cardiovascular events: conges-
tive heart failure, coronary heart disease, angina, heart
attack, or stroke. We further restricted our sample to par-
ticipants with biomarkers in the appropriate range for
use of the 2013 pooled cohort equations (29, 30): high-
density lipoprotein cholesterol level greater than or
equal to 0.52 mmol/L (20 mg/dL) and less than or equal
to 2.59 mmol/L (100 mg/dL), total cholesterol level
greater than or equal to 3.37 mmol/L (130 mg/dL) and
less than or equal to 8.28 mmol/L (320 mg/dL), and sys-
tolic blood pressure greater than or equal to 90 mm Hg
and less than or equal to 200mmHg.

Breast Cancer
For breast cancer, we restricted our data sample

fromNHANES to women aged 35 years or older.

Lung Cancer
For lung cancer, we used the full data sample from

NLST.

RiskModels for Each Disease
Cardiovascular Disease
For cardiovascular disease, the 2018 Cholesterol Clinical
Practice Guidelines and the 2017 Hypertension Clinical
Practice Guidelines recommend using the U.S.-derived,
race- and sex-specific pooled cohort equations from
2013 to estimate 10-year risk for atherosclerotic cardio-
vascular disease events (29). The covariates used by the
atherosclerotic cardiovascular disease pooled cohort
equations vary by race and ethnicity and sex because
there are 4 separate equations based on sex (male or
female) and race and ethnicity (non-Hispanic Black or
non-Hispanic White). According to the 2013 guidelines
from the American Heart Association, the equations for
non-Hispanic White persons may be used to estimate

the risk for persons of other ethnicities (30). The
American Heart Association guidelines recommend that
a risk threshold of 7.5% be used to identify persons who
would benefit from starting a moderate-intensity statin
therapy (31). This is the decision threshold we consid-
ered for the cardiovascular disease analysis, above
which the benefits of statin therapy are generally consid-
ered to outweigh its potential harms, burdens, and cost.

Breast Cancer
The National Cancer Institute maintains an online

Breast Cancer Risk Assessment Tool that estimates an
individual’s 5-year risk based on the Gail model, which
we likewise use to compute breast cancer risk estimates
(32–36). To do so, we used the BCRA R package (version
2.1.2) published by the National Cancer Institute (37).
The U.S. Food and Drug Administration has approved
using a 1.67% threshold on 5-year risk as determined by
the Breast Cancer Risk Assessment Tool for prescribing
tamoxifen and raloxifene as chemoprevention for breast
cancer (39, 40). This is the decision threshold we consid-
ered for our breast cancer analysis.

NHANES does not contain information on the number
of first-degree relatives with breast cancer—one of the
inputs of the Gail model. To account for this gap, for each
individual in our data set we randomly generated a value
for the number of their first-degree relatives with breast
cancer, based on national race- and ethnicity-specific sta-
tistics (38). Specifically, for each individual in our data sam-
ple, we sampled a binary value as an approximation of the
number of first-degree relatives with breast cancer using a
Bernoulli distribution parameterized by race- and ethnic-
ity-specific probabilities of having a first-degree relative
with breast cancer for women in the United States:

Number of relatives�Bernoulli (p¼prace)
where

pWhite ¼ 21433 þ 6582
235629

� 0:12

pBlack ¼ 1384 þ 1128
27179

� 0:09

pAsian ¼ 514 þ 377
11780

� 0:08

and

pHispanic ¼ 546 þ 256
9049

� 0:09

These rates were taken from prior work on breast can-
cer incidence (Table 1 in Durham and colleagues [38]).

NHANES also does not contain information on the his-
tory of breast biopsy or atypical hyperplasia. Therefore,
histories of breast biopsy and atypical hyperplasia were
inputted as unknown values into the riskmodel.

Lung Cancer
For lung cancer, we computed 5-year risk predic-

tions from the National Cancer Institute’s Lung Cancer
Risk Assessment Tool model (41). To compute risk esti-
mates, we used the Lung Cancer Risk Models for
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Screening (lcrisks) R package (version 4.1.1) published
by the National Cancer Institute (42). Past work has
assessed and recommended a risk threshold of approxi-
mately 2.0% for selecting ever-smokers for computed
tomography lung cancer screening (41, 43), which is
likewise the decision threshold we considered for our
lung cancer analysis.

The full set of covariates used by the Lung Cancer
Risk Assessment Tool model is as follows: year of assess-
ment; age; gender; number of years smoked; number of
years quit; number of cigarettes per day; race and eth-
nicity; whether the individual has any health problems
requiring special equipment; whether the individual has
chronic obstructive pulmonary disease or emphysema;
number of parents with lung cancer; body mass index;
highest education level attained; history of cancer; indi-
cator variables for hypertension, coronary heart disease,
angina pectoris, heart attack, other heart disease, stroke,
and diabetes; and indicator variables for whether in the
past year the patient has had chronic bronchitis, weak or
failing kidneys, or a liver condition (42). The NLST data
do not contain information on other heart disease, kid-
ney issues, liver issues, angina, or the presence of condi-
tions that require special medical equipment; therefore,
these were inputted as unknown values into the risk
model.

Survey sample weights were not provided in the
NLST data set, so we reweighted participants to match
the joint age, gender, and race distribution of Americans
between ages 40 and 80 years, mirroring the age range
of participants in the NLST data. To generate these
weights, we used data on the national population by
characteristics (2020 to 2023) provided by the U.S.
Census Bureau (28). Specifically, we used the projected
monthly population estimate by age, sex, race, and
Hispanic origin for June 2024. The weight for an individ-
ual of age A¼ a, sex S¼ s, and race and ethnicity R¼ r
was computed as follows:

Weight ¼ U:S:populationproportion
NLST proportion

where

U:S:populationproportion

¼
PNCensus

i¼1 IðAi ¼ a; Si ¼ s; Ri ¼ rÞ
NCensus

and

NLST proportion ¼
PNNLST

i¼1 IðAi ¼ a; Si ¼ s; Ri ¼ rÞ
NNLST

and I(·) denotes the indicator function.

Estimating Race-Unaware Risk
To obtain race-unaware estimates of risk for each indi-
vidual, we invoke the law of total probability as follows:

PðDiseasejXÞ ¼
X
r

P Disease jX; R ¼ rÞ � P R ¼ r jXÞðð

where X denotes the set of nonrace covariates used to
estimate risk for a given disease and R denotes race and
ethnicity. We estimate P(R¼ r jX) using a multinomial
regression model that predicts race using the covariates
used in the risk model for each disease. The right-hand
side of the equation is equal to the weighted sum of the
risk estimates obtained from the race-aware risk model.
The above equation then amounts to marginalizing out
race and ethnicity from the risk prediction.

We note that, in practice, if one wanted to generate
race-unaware risk models for any of the diseases consid-
ered, the preferred way to do so would be to train a new
model without using race and ethnicity as features, per-
haps also including social and biological determinants
correlated with race and ethnicity that might improve
the performance of race-unaware predictions.

Deriving the Value of Screening or Treatment
Cost
For each disease, we assume that the decision threshold
is set at the point of indifference—that is, where the
expected benefits of an intervention (either screening or
treatment) equal the expected costs. Based on the tree
structure depicted in Figure 1, we use this fact to derive

Appendix Figure 1. Baseline utility results per disease, by race and ethnicity.
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Appendix Figure 2. Subgroup analysis of the age distribution of individuals appropriately recommended for screening or treatment
under race-aware and race-unaware models.
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For each disease, we show the age distribution of individuals who are appropriately recommended for screening or treatment by a race-aware model
and by a race-unaware model. The group-level mean age is shown by the black vertical line. For each subgroup within each disease, the race-aware
and race-unaware models recommend similar groups of individuals for screening or treatment. These results suggest that an age-based utility function
(e.g., based on quality-adjusted life-years) would yield results similar to those in our base-case analysis, where we assumed uniform benefit across
individuals.
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the value of the intervention cost c in terms of the thresh-
old t. In particular, for an individual on the threshold
(that is, with P(Disease)¼ t) we have:

0 ¼ E½InterventionUtility�
¼ PðDiseaseÞ � ð1� cÞ–

�
1� PðDiseaseÞ

�
� c

¼ t � ð1� cÞ � ð1� tÞ � c
¼ t� tc–cþ tc
¼ t� c

As a result, c¼ t.

Heterogeneous Utility
We start by considering age-related heterogeneity in utility.
To do so, we examine the age of persons recommended
for screening or treatment by race-aware versus race-
unaware models. For all 3 diseases we study, we find that

the average age of persons appropriately recommended
for intervention is nearly identical between the race-aware
and race-unaware models. Further, not just the means but
the full distributions of age are likewise nearly identical
across the race-aware and race-unaware models, as shown
in Appendix Figure 2. As a result, a heterogeneous form of
the utility function based solely on age (for example, one
based on quality-adjusted life-years) would produce quali-
tatively similar results to what we find in the base case.

In using statistical risk models to inform intervention
decisions, there may be group-specific tradeoffs between
the costs and benefits of intervention—a tradeoff that we
shed greater light on in this analysis. To do so, we trace
out the frontier of the fraction of appropriate cases that
are recommended for intervention (sensitivity or true-posi-
tive rate) as a function of the fraction of the subgroup pop-
ulation that is recommended for intervention. For each

Appendix Figure 3. Sensitivity analysis for when the utility benefit varies across groups.
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Across racial and ethnic subgroups for cardiovascular disease, breast cancer, and lung cancer, the frontier of the fraction of appropriate cases that are recom-
mended for intervention (sensitivity or true-positive rate) as a function of the fraction of the subgroup population that is recommended for intervention. Each plot
represents a subgroup and a specific disease, showing the relationship between the fraction of the population recommended for intervention (x-axis) and the actual
fraction of appropriate cases identified (y-axis). Solid points indicate the tradeoff obtained using a race-aware model with the recommended decision threshold,
and hollowpoints show the tradeoff obtained using a race-unawaremodel with the recommendeddecision threshold.
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disease and race group, we do this by starting with the
race-aware risk model and then, for each (race-specific)
decision threshold, plotting the resulting intervention rate
and true-positive rate obtained with that threshold. We
show the results in Appendix Figure 3, where each point
on the curve is an outcome that is theoretically achievable
with a race-aware decision tool.

The solid point in each subplot in Appendix Figure 3
corresponds to the tradeoff between intervention and
detection using the recommended decision threshold
with a race-aware model. The hollow point in each sub-
plot corresponds to the tradeoff using the recom-
mended decision threshold with a race-unaware model.
For several subgroups and diseases, the race-aware and
race-unaware models yield different tradeoffs. If one
believes there are group-specific differences in the costs
and benefits of appropriate intervention, then a policy-
maker may want to recommend intervention for a

particular subgroup at higher rates than for the general
population to obtain a higher fraction of cases that are
detected or appropriately treated within that subgroup.
In such a scenario, the relative utility of a race-aware risk
assessment tool over a race-unaware tool could be
greater than suggested by our base-case analysis.

Optimal Screening Thresholds
We verified that the optimal threshold under a race-
aware model is approximately equal to the optimal
threshold under a race-unaware model. The results of
this analysis are shown in the Appendix Table. To verify
optimal threshold values, we computed the total popula-
tion utility (under either a race-unaware model or a race-
aware model) as a function of threshold values t in the
range (0,1). We then determined the value of t that maxi-
mized the total population utility under each model.

Appendix Table. Verification of Optimal Race-Aware and Race-Unaware Risk Thresholds*

Disease Recommended Threshold, % Optimized Race-Aware Threshold, % Optimized Race-Unaware Threshold, %

Cardiovascular disease 7.5 7.51 7.49
Breast cancer 1.67 1.66 1.66
Lung cancer 2.0 2.0 2.1

* Optimal thresholds under race-aware and race-unaware models are approximately equal.
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