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In observational studies of discrimination, the most common statistical approaches
consider either the rate at which decisions are made (benchmark tests) or the success
rate of those decisions (outcome tests). Both tests, however, have well-known statistical
limitations, sometimes suggesting discrimination even when there is none. Despite
the fallibility of the benchmark and outcome tests individually, here we prove a
surprisingly strong statistical guarantee: Under a common nonparametric assumption,
at least one of the two tests must be correct; consequently, when both tests agree, they
are guaranteed to yield correct conclusions. We present empirical evidence that the
underlying assumption holds approximately in several important domains, including
lending, education, and criminal justice—and that our hybrid test is robust to the
moderate violations of the assumption that we observe in practice. Applying this
approach to 2.8 million police stops across California, we find evidence of widespread
racial discrimination.

outcome tests | benchmark tests | inframarginality | monotone likelihood ratio property

When assessing claims of discrimination, researchers often begin by considering whether
decision rates differ across groups defined by race or gender, typically after adjusting for
relevant differences between groups. For example, to test for discrimination in banking,
one might estimate differences in lending rates between White and Black loan applicants
after adjusting for an individual’s credit score, income, and savings. Although such a
“benchmark test” can be informative, it is prone to omitted-variable bias: Failing to adjust
for all relevant information can yield misleading estimates. Nonetheless, benchmark tests
have been applied in nearly every domain where discrimination is studied, generally
under an implicit assumption that analysts have access to all relevant covariates (1–6).

To mitigate the omitted-variable problem inherent to benchmark tests, Becker (7, 8)
introduced the “outcome test,” in which one looks not at decision rates but rather success
rates. If, for example, loans issued to Black borrowers are repaid at higher rates than those
issued to White borrowers, it suggests a double—and discriminatory—standard, with
bank officials granting loans only to exceptionally creditworthy Black applicants. Owing
perhaps to its simplicity and intuitive appeal, the outcome test has now become one
of the most popular empirical approaches to detecting discrimination. Researchers have
applied the test to audit a wide range of decisions, including lending, hiring, publication,
and candidate election (9–15). The outcome test has gained particular prominence in
criminal justice, among both researchers and policymakers (16–25).

Like the benchmark test, however, the outcome test suffers from well-known statistical
limitations (26–31). Consider the stylized example in Fig. 1, where the red and blue curves
show the distribution of repayment probability across loan applicants in two different
groups (henceforth, “risk distributions”). In this hypothetical, bank officials grant loans
to those applicants who are at least 50% likely to repay their loans—indicated by the
dashed black vertical line—irrespective of group membership. Despite this uniform
lending standard, loan recipients in the blue group are more likely to repay their loans
than recipients in the red group. In statistical terms, conditional on being above the
lending threshold, the mean of the blue group’s risk distribution is greater than the
mean of the red group’s. As a result, the outcome test would incorrectly conclude that
applicants in the blue group were subject to a more stringent lending standard.

This problem of “inframarginality” has attracted considerable attention, prompting
several attempts to place outcome tests on firmer statistical footing. Knowles et al. (32)
developed a model of behavior under which risk distributions collapse to a single point,
eliminating the possibility of inframarginality. Although theoretically interesting, the
key assumption in that approach has been critiqued for being at odds with empirical
evidence (33, 34). Anwar and Fang (31) proposed a test based on decision and outcome
rates conditional on the race of both decision makers and those subject to those decisions.
Their method is guaranteed, under certain conditions, to produce correct inferences, but
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it can only identify relative disparities between decision makers
from different race groups. Building on that work, Alesina and
La Ferrara (35) proposed a test of racial bias in capital sentencing
based on the relative likelihood that decisions were overturned
across defendant-victim race pairs. Arnold et al. (36) sidestepped
concerns of inframarginality by directly estimating outcomes for
individuals at the margin, leveraging quasi-random assignment of
decision makers. Theirs is a statistically compelling approach but
can only be applied in certain settings, where decision makers are
plausibly quasi-randomly assigned and analysts have information
on the actions of individual decision makers. Simoiu et al. (27)
and Pierson et al. (37) worked to overcome inframarginality
by simultaneously estimating risk distributions and decision
thresholds with a parametric model. Their approach, however,
is sensitive to the exact model form, and, in particular, estimates
are not identified by the data alone. Finally, Jung et al. (34) used
detailed individual-level information on covariates and outcomes
to directly estimate group-specific risk distributions. The method
is effective when it can be used (38–40), though the demanding
data requirements limit the applicability of their approach.

Despite the limitations of both the benchmark and outcome
tests, here we show that simply combining the two yields a robust
outcome test with surprisingly strong statistical guarantees. In
particular, if the group-specific risk distributions satisfy the
monotone likelihood ratio property (MLRP) (41), then either
the benchmark test—without adjusting for any covariates—
or the standard outcome test must yield correct conclusions.
Thus, when both the benchmark and outcome tests indicate
discrimination, that conclusion must be correct. The MLRP is a
widely applied assumption on signal distributions in information
economics (e.g., refs. 42–45), as well as in the outcome test
literature (e.g., refs. 31 and 46). We expect the MLRP to
hold when it is similarly difficult to make accurate decisions
for members of each group (e.g., when the group-specific risk
distributions have similar variances, as in Fig. 1). Drawing on
data from lending, education, and criminal justice, we present
empirical evidence that the MLRP is approximately satisfied in
several important domains. We further show that our hybrid
test is robust to the moderate violations of the MLRP that we

Fig. 1. A stylized example illustrating the problem of inframarginality.
The two curves depict the distribution of repayment probabilities for two
hypothetical subpopulations. Applying a uniform lending threshold of 50%
(dashed black vertical line) results in a higher repayment rate for loan
recipients in the blue group (71%; dotted blue vertical line) than for recipients
in the red group (64%; dotted red vertical line). The outcome test would thus
incorrectly infer that members of the blue group were subjected to a more
stringent lending standard.

observe in our data. Applying this approach to 2.8 million police
stops across 56 law enforcement agencies in California, we find
evidence of pervasive discrimination in police searches of Black
and Hispanic individuals—a pattern that would have been missed
by the standard outcome test.

1. Statistical Guarantees

In our running lending example, our robust outcome test
suggests discrimination against a group if two conditions hold
simultaneously: 1) lending rates are lower for that group (the
benchmark test), and 2) repayment rates among loan recipients
are higher for the group (the standard outcome test). In the
stylized example depicted in Fig. 1, loan recipients in the
blue group have higher repayment rates, satisfying the standard
outcome test; but members of the blue group are also more likely
to receive loans, failing the benchmark test. In this case, whereas
the standard outcome test incorrectly infers the blue group is held
to a higher, discriminatory lending standard, our robust outcome
test correctly concludes that there is insufficient evidence to
support a claim of discrimination. We next present formal
conditions under which the robust outcome test is guaranteed
to produce correct results.

1.1. Formal Setup. Our formal setup follows the literature on
analyzing outcome tests (see, e.g., ref. 27). We imagine a
population of individuals belonging to one of two groups
G ∈ {0, 1}, indicating, for example, their race or gender. Decision
makers take a binary action D ∈ {0, 1} for each individual,
such as approving (D = 1) or denying (D = 0) an individual’s
application for a loan. The decision maker is interested in some
binary outcome Y ∈ {0, 1}, which, in our running example,
corresponds to loan repayment (e.g., Y = 1 if the loan is repaid
and Y = 0 otherwise). The decision maker does not know Y at
decision time, but they can estimate it based on the information
X ∈ X—including group membership G—then available to
them about the applicant. In particular, at the moment the
decision is made, we assume they can estimate the probability
that Y = 1 given the available information:

R def= Pr(Y = 1 | X ). [1]

In our running example, R is the decision maker’s estimate of the
applicant’s repayment probability. Moreover, the conditional
distributions of R by group correspond to the risk distributions
in Fig. 1.

Finally, we assume that decision makers are rational, meaning
that, within each group, their actions follow threshold rules.
(This condition can be relaxed; see SI Appendix, section 1.B.) In
particular, we assume they take action D = 1 for individuals in
group G = g if, and only if, R exceeds some (possibly group-
specific) threshold tg :

D def=
{

1 if G = g and tg ≤ R,
0 otherwise.

[2]

Following Becker (7, 8), “discrimination” in this setting cor-
responds to having different group-specific thresholds (i.e.,
t0 6= t1), meaning decision makers apply a double standard.
For instance, in our lending example, t1 > t0 would mean that
decision makers grant loans to members of group G = 1 only
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Fig. 2. An empirical check of the monotonicity condition of Theorem 1 across four domains, comparing the risk distributions of Black vs. White (red) and
Hispanic vs. White (blue) individuals. The estimated likelihood ratios all generally increase or decrease monotonically, providing evidence that the MLRP
assumption often holds approximately in practice. The dark and light shaded bands (visible only in the recidivism panel) indicate 68% and 95% bootstrapped
CIs, respectively.

if they are exceptionally qualified—amounting to discrimination
against that group.*

With this setup, we now state our main technical result.

Theorem 1. Suppose Pr(G = 1 | R = r) is a monotonic function
of r, and that, for g ∈ {0, 1}, the conditional distribution of R |
G = g has positive density on (0, 1). Now, if:

1. 0 < Pr(D = 1 | G = 1) < Pr(D = 1 | G = 0), meaning
that the decision rate is lower for group G = 1 than group
G = 0; and

2. Pr(Y = 1 | D = 1, G = 1) > Pr(Y = 1 | D = 1, G = 0),
meaning that the outcome rate is higher for group G = 1 than
group G = 0;

then t0 < t1.

Theorem 1 shows that under the stated monotonicity ass-
umption—which, we show in SI Appendix, is equivalent to
the standard MLRP—a group with both lower decision rates
and higher outcome rates is necessarily being held to a higher
threshold. For ease of exposition, we present this result for risk
distributions with positive densities, threshold decision rules,
and binary outcomes, but a much more general version of the
result holds. SI Appendix, Theorem S2 extends Theorem 1,
removing the positive density assumption, allowing for quasi-
rational decision makers (e.g., with decisions following a logistic
curve rather than a threshold function), and incorporating real-
valued outcomes (e.g., repayment amounts rather than a binary
repayment indicator). See SI Appendix, section 1.A for the proof
of Theorem 1 and SI Appendix, sections 1.B–1.E for the general
case.

2. Assessing Monotonicity

The primary assumption of Theorem 1 is that Pr(G = 1 | R = r)
is monotonic—which, as discussed above, is equivalent to the

*As is typical of statistical tests of discrimination, our definition cannot differentiate
intentional and unintentional behavior. For instance, different lending thresholds could
result from animus, or what is commonly called “disparate treatment” (47). Alternatively,
threshold gaps might arise unintentionally, potentially leading to “disparate impact”—
unjustified, avoidable disparities (38). For example, suppose a bank applies a uniform
lending threshold to miscalibrated estimates of risk, which consistently underestimate
repayment probability for members of one group. Such miscalibration could occur if
the bank does not account for varying relationships between covariates and repayment
across groups—sometimes called the “subgroup invalidity” problem (48). Our definition of
discrimination considers the bank’s behavior relative to the true (necessarily calibrated)
risk in Eq. 1. In terms of this risk, the bank’s behavior amounts to applying a double
standard, unintentionally but favorably lending to the group whose risk it underestimated.
Despite this inherent uncertainty about the underlying mechanism, statistical results like
those produced by the robust outcome test can bolster legal claims of both disparate
treatment and disparate impact (24).

group-specific risk distributions satisfying the MLRP. To build
intuition about this nonparametric assumption, we consider
related parametric conditions on the group-specific risk curves.
In particular, a sufficient condition for monotonicity is that the
group-specific risk curves are beta distributed with the same total
count � + � (but possibly different means). More generally,
monotonicity holds for betas if and only if the risk curves intersect
exactly once, for instance as depicted in Fig. 1. (See SI Appendix,
section 1.D for more general discussion of parametric conditions
that ensure monotonicity and SI Appendix, Fig. S1 for an example
where the MLRP fails.)

In our running example, equal total count roughly means that
it is equally difficult for lenders to distinguish between high-
and low-risk applicants across groups. One can imagine that an
approximate version of this property holds not only in lending,
but across many domains. Indeed, if it fails to hold, one might
wonder whether decision makers are ignoring important features
to mask discriminatory intent. With redlining, for example,
lenders ignored key indicators of individual creditworthiness to
justify denying loans to racial minorities (49).

2.1. Empirical Evaluation. We explore the extent to which mono-
tonicity holds in practice by considering group-specific empirical
risk distributions in four domains, spanning banking, education,
and criminal justice. Specifically, we consider: 1) the probability
of default among applicants using an online financial technology
platform, based on a bevy of traditional and nontraditional
variables available to the platform when deciding whom to offer
loans; 2) risk of recidivism among defendants awaiting court
proceedings, as determined by COMPAS risk scores, which
inform judicial bail decisions (50, 51); 3) the risk that pedestrians
stopped by the police are carrying contraband, based on indicators
such as the reason for the stop and the suspected offense, which
inform officer decisions to search stopped individuals (1, 16);
and 4) the probability that law school applicants will pass
the bar exam, using their undergraduate grade-point average,
LSAT score, and other information available to schools making
admissions decisions (52). We observe only a proxy of the true
outcome of interest—e.g., we see repayment outcomes only
among those who received loans, not for the entire population of
applicants. Similarly, we do not have the full suite of covariates
available to decision makers. As a result, our estimates of risk are
approximate. Nonetheless, these estimates give insight into the
plausibility of the monotonicity assumption. (See SI Appendix,
section 2 for details on the data sources and risk estimation
methods.)
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Fig. 3. Results of a simulation study comparing the standard and robust outcome tests. The x-axis indicates the decision threshold for White individuals,
and the y-axis indicates the decision threshold for Black individuals. The Upper-Left and Lower-Right triangular regions correspond to scenarios where
decision makers discriminate against either Black or White individuals, as indicated by the “×” and “ ·” symbols, respectively; nondiscriminatory scenarios
are shown by the dashed diagonal line. Red regions indicate where the tests suggest discrimination against Black individuals, blue regions indicate where
the tests suggest discrimination against White individuals, and yellow regions indicate where the robust outcome test is inconclusive. The gray areas
represent simulation scenarios that are not feasible because a threshold lies outside the support of the risk distribution of the corresponding group.
Across simulations, the standard outcome test indicates discrimination when, in reality, there is none—and often indicates discrimination against the group
that in actuality was favored. In contrast, the robust outcome test is nearly always directionally accurate, though it sometimes returns an inconclusive
result.

For each of these four cases, we plot, in Fig. 2, Pr(G = 1 |
R = r) for Black vs. White individuals (red), and, separately,
for Hispanic vs. White individuals (blue). (Here, “White” means
non-Hispanic White.) We set G = 1 for the smaller group
in each comparison—which corresponds to Black or Hispanic
individuals except for in our policing example, in which case
White individuals are the smaller group. In every instance, we see
that the monotonicity condition holds approximately, suggesting
that it is, in practice, a relatively mild assumption. Monotonicity,
however, does not hold exactly in these domains—nor would
we expect it to in any real-world dataset. [Violations of the
MLRP are visually apparent in Fig. 2, though formal tests of
monotonicity could also be applied (53).] We thus next conduct
a simulation study to assess the robustness of Theorem 1 to
moderate violations of monotonicity, like those shown in Fig. 2.

2.2. Simulation Study. Starting with the empirical risk distribu-
tions in the four examples considered above, we evaluate whether
the robust and standard outcome tests correctly detect discrimi-
nation under a variety of discriminatory and nondiscriminatory
scenarios. We find that across scenarios, the robust outcome test
is nearly always correct: When it indicates discrimination against
a group, that is almost always the correct inference. (Though, as
expected, the test sometimes returns an inconclusive result.) In
contrast, in these simulations, the standard outcome test often
suggests discrimination against the group that in reality received
preferential treatment.

For each of our four domains, we first generate synthetic
datasets for Black and White individuals based on the estimated
risk distributions. (See SI Appendix, Fig. S3 for Hispanic
individuals.) To do so, for a given pair of hypothetical, group-
specific decision thresholds tg , we repeatedly draw individuals at
random from each group, setting Di = 1 if their estimated risk
Ri exceeds tg and setting Yi = 1 with probability Ri. We then
estimate the decision rate D̂Rg as the proportion of individuals in
groupG = g receiving positive decisionsD = 1; and we estimate
the outcome rate ÔRg as the proportion of individuals with

positive outcomes Y = 1, among those with positive decisions.†
Finally, we test for discrimination using the robust and standard
outcome tests by comparing the decision and outcome rates across
groups. In our simulations, we sweep tg across all percentiles of
the risk distributions.‡

The results of the simulation are shown in Fig. 3. As can
be seen in the Top panels, the robust outcome test is virtually
always inconclusive in the absence of discrimination—as we
would hope—shown by the yellow region covering the diagonal
“no discrimination” line. Moreover, in the off-diagonal regions,
where the group-specific thresholds differ, the robust outcome
test frequently detects discrimination, and nearly always in the
right direction. In contrast, the standard outcome test, as shown
in the Bottom panels of Fig, 3, makes frequent errors, both
suggesting discrimination when there is none, as well as indicating
discrimination against the group that, in actuality, decision
makers favored. Thus, even in these cases where the MLRP does
not hold exactly, the robust outcome test still provides correct
inferences, and, moreover, outperforms the standard outcome
test.

The extent to which the robust outcome test is able to detect
discrimination—as opposed to returning an inconclusive result—
varies across domains. In particular, when there is a large gap in
base rates, it is hard to detect instances of discrimination. In these
cases, even when there is (modest) discrimination, the higher base
rate group still tends to have both the higher decision rate and
the higher outcome rate, yielding an inconclusive result under
the robust outcome test. Accordingly, when there is a large gap
between base rates, the robust outcome test can only definitively
detect more severe instances of discrimination. For instance, the

†As the size of the synthetic datasets goes to infinity, the limits of D̂Rg and ÔRg can be
computed directly from the risk distributions, without sampling. We take this analytic
approach in our simulations for computational efficiency.
‡Specifically, we use the quantiles of the average risk distribution across groups, i.e., the
distribution with CDF F(x) def

= 1
3 [FB(x) + FH(x) + FW(x)], where Fg(x) denotes the CDF

of Black, Hispanic, and White individuals, respectively. This parameterization ensures that
thresholds are not sensitive to the relative sizes of the groups. We exclude the 0th and
100th percentiles.
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Fig. 4. An illustration of the robust outcome test applied to 56 law enforcement agencies across California, with points corresponding to agencies and sized by
the number of stops. In each panel, the robust outcome test suggests agencies in the Upper-Left quadrant discriminated against racial minorities when deciding
whom to search, and that agencies in the Lower-Right quadrant discriminated against White individuals. The test yields inconclusive results for agencies in the
white quadrants on the diagonal.

law school admissions example in Fig. 3 features especially large
gaps between the base rates of different groups, resulting in a large
inconclusive region. See SI Appendix, section 3.3 and SI Appendix,
Fig. S7 for further discussion of the impact of differences in base
rates on the sensitivity of the robust outcome test.

In our formal analysis and simulations above, we assume that
decision makers are rational within groups, making decisions
based on a (potentially group-specific) threshold. In SI Appendix,
section 1.B, we relax this assumption and consider quasi-rational
decision makers. Simulation results for quasi-rational decision
makers show similar patterns; see SI Appendix, Figs. S5 and S6.

3. An Application to Police Stops

We conclude our analysis by applying the robust outcome test
to data on 2.8 million police stops conducted in 2022 by 56
law enforcement agencies across California. These data were
collected as part of California’s Racial Identity and Profiling
Act (RIPA) (38, 54). After an individual is stopped by the police,
officers may legally conduct a search of the individual or their
vehicle if there is sufficient evidence that the individual possesses
contraband. Here we use the robust outcome test to determine
whether officers apply the same standard of evidence across racial
groups when deciding whom to search.§ To do so, we compute,
for each jurisdiction, the race-specific search rates and search
success rates (i.e., the proportion of searches that resulted in
recovery of contraband). If members of a group are both searched
more often and those searches turn up contraband less often, then
the robust outcome test indicates that the group was searched
according to a lower, discriminatory standard of evidence. (In
contrast to our running lending example, where we equated
discrimination with a higher lending threshold, discrimination
here corresponds to a lower search threshold.)

§Following the outcome test literature (e.g., ref. 17), here we consider only potential
discrimination in search decisions—and not in, for example, stop decisions. The main
advantages of focusing on search decisions in our setting are two-fold. First, it is clearer
what constitutes “success” (i.e., recovery of contraband), facilitating the computation
of outcome rates. Second, the pool of individuals subject to the search decision (i.e.,
individuals stopped by officers) is well defined, facilitating computation of decision rates.
In contrast, there is more ambiguity in specifying the set of individuals subject to stop
decisions. One could, for example, consider the residential population or, alternatively, the
daytime population, and could additionally choose to weight either of these populations
by their time outdoors. Compounding this definitional challenge, it can be hard to reliably
quantify the size and demographic composition of several of these variants.

In the RIPA data, individual-level covariates are recorded
selectively (e.g., many covariates are only recorded when a
search is conducted). This missingness makes estimating risk
difficult (38), and, consequently, we cannot directly validate the
MLRP assumption. We expect, however, that the robust outcome
test is most useful in precisely these data-limited settings. [If
one could accurately estimate risk, other methods may be more
appropriate, e.g., risk-adjusted regression (34).] Absent direct
evidence of the MLRP, the empirical results of Section 2—and,
in particular, the monotonicity observed in the closely related
policing domain considered there—offer reasonable assurances
that the MLRP holds approximately for the RIPA data.

We plot the results of our empirical analysis in Fig. 4, with
points corresponding to agencies, sized by the number of recorded
stops. Each panel compares stops of White individuals to those
of racial minorities (Black or Hispanic individuals, respectively).
In each panel, differences between group-specific search rates
are plotted on the vertical axis, and differences in search success
rates on the horizontal axis. Under the robust outcome test,
the red quadrants thus indicate racial discrimination, as those
regions contain jurisdictions with both higher search rates and
lower search success rates for one of the groups. In particular,
the upper-left quadrants suggest discrimination against racial
minorities, and the lower-right quadrants suggest discrimination
against White individuals. The robust outcome test returns an
inconclusive result for agencies in the white, diagonal quadrants,
as those correspond to both higher search rates and higher search
success rates for one of the groups.

Of the 56 agencies we consider, the robust outcome test
suggests discrimination against Black individuals by 33, and
discrimination against Hispanic individuals by 32. The test
returns an inconclusive result in nearly all of the remaining cases.¶
The robust outcome test thus suggests a pattern of widespread

¶ In these inconclusive instances, the standard outcome test generally suggests discrimina-
tion against White individuals. In contrast, in the policing simulation shown in Fig. 3, when
the robust outcome test is inconclusive, the standard outcome test generally suggests
discrimination against Black individuals. This difference may stem in part from the risk
distributions being broadly similar in both our RIPA analysis and policing simulation, but
with the high and low base rate groups reversed. In particular, in the policing dataset
used for the simulation, stopped White pedestrians are the higher base rate group—
likely because of discrimination in the initial stop decisions (16). In the RIPA data—
primarily consisting of motor vehicle stops, which may be less prone to discrimination than
pedestrian stops (17)—stopped White individuals are likely the lower base rate group (38).
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discrimination against racial minorities in police searches across
California.

The standard outcome test, in contrast, suggests White
individuals were searched according to a lower standard of
evidence than Black individuals in about one-third of agencies—
corresponding to points in the right-hand quadrants—indicating
discrimination against White individuals in those jurisdictions.
While not impossible, that result is at odds with an extensive
analysis of police discrimination in the literature (1, 16, 17, 22,
24, 27, 34, 38, 55–57), pointing to the statistical limitations of
the standard outcome test. Due to this lack of face validity, it is
easy to dismiss results from the standard outcome test even when
it suggests more plausible findings of discrimination against racial
minorities, illustrating the value of our robust alternative.

4. Discussion

Our empirical analysis of police decisions suggests that the robust
outcome test is, in practice, a more accurate barometer of bias
than the standard outcome test. Further, it is a logistically
straightforward and intuitively appealing method for assessing
discrimination. Applying the test requires knowing only group-
specific decision and success rates, information that is often
readily available in administrative databases. Critically, the robust
outcome test avoids omitted-variable bias because it does not use
individual-level covariates. Nor does it require decision maker
demographics, as other methods do (e.g., refs. 31 and 34)
but which—like detailed covariate information—administrative
records often omit.# Further—and in contrast to both the
benchmark and standard outcome tests—the robust outcome
test is guaranteed to produce correct results under a realistic
assumption about the underlying risk distributions. Compared
to more statistically sophisticated approaches like the threshold
test (27, 37), it requires substantially weaker assumptions to
establish correctness.

Our theoretical and empirical results strengthen several past
findings in the outcome test literature, where decision rates
were reported and are consistent with outcome rates (e.g., refs.
17, 19, 20, and 22–25). (In these instances, decision rates
were reported incidentally or analyzed separately from outcome
rates, rather than in the hybrid fashion we suggest.) In many
cases, however, researchers simply apply the standard outcome
test without reporting decision rates (e.g., refs. 9, 10, 12–
15, and 21). Our results thus highlight an important gap in
the literature, and suggest a straightforward change to improve
current methodological practice.

Despite the benefits of our robust outcome test, it is important
to recognize its limitations. First, and most importantly, our
proof of correctness rests on a key monotonicity assumption.
We presented empirical evidence that this assumption holds
approximately in many common cases, and we further showed
that, in practice, we obtain correct inferences even when
#The RIPA data, in addition to the covariate shortcomings noted above, do not have officer
demographics, complicating statistical analyses of discrimination that seek to leverage
such information.

monotonicity does not hold exactly. But the test may yield
incorrect results in settings where it is substantially easier to
make inferences about one group than another (SI Appendix,
Fig. S1). Second, like the standard outcome test, computing
success rates requires unbiased outcomes. In the policing data we
analyzed, it seems likely that our main outcome of interest—
contraband recovery—was generally recorded accurately, but
that may not always be the case. Third, our robust outcome
test can return inconclusive results. In these cases, an absence
of evidence of discrimination may stem either from a lack
of actual discrimination or from real discrimination that has
gone undetected. In particular, as discussed above, the robust
outcome test often fails to detect small or moderate threshold
gaps when there is a large difference in base rates between
groups. We note, though, that in our empirical analysis of police
stops, the robust outcome test produced conclusive results in
the majority of instances, revealing a pervasive pattern of dis-
crimination. Finally, the robust outcome test—like the standard
outcome test—formally produces only a binary determination
of discrimination, not a continuous measure of the degree of
discrimination.

These limitations suggest promising avenues for future work.
In practice, we suspect that greater gaps in decision and success
rates point toward greater discrimination. However, rigorously
grounding this intuition requires both choosing an appropriate
continuous measure of discrimination and, likely, additional
parametric assumptions. Relatedly, with stronger, parametric
assumptions, one can likely develop variants of the robust
outcome test that more often return conclusive results. Lastly,
the robust outcome test requires only aggregate information on
decision and outcome rates—one of its strengths—but estimates
can likely be improved by appropriately leveraging individual-
level covariates when they are available. We caution, though,
that simply conditioning on the available information can
lead to “included-variable bias” (34, 48), masking discrimina-
tion.||

Recent years have brought renewed urgency to identifying
and ameliorating bias in policing and beyond. We hope our
work helps further this area of study, both by providing a
straightforward and statistically robust method for detecting
discrimination, and by offering a blueprint for formally studying
empirical tests of bias.

Data, Materials, and Software Availability. Data and analysis code are
available on GitHub (58).
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||For example, imagine that officers apply a lower bar for searching pedestrians in
neighborhoods with a large number of racial minorities—but apply uniform search stan-
dards within neighborhoods, regardless of an individual’s race. Then, by conditioning on
neighborhood, we might correctly infer there is no discrimination within neighborhoods
while failing to capture the larger pattern.
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