
Sharding Social Networks

Quang Duong
University of Michigan
Computer Science and

Engineering
Ann Arbor, MI

duonganhquang@gmail.com

Sharad Goel
Yahoo! Research

111 West 40th Street
New York, NY 10018

5harad.6oel@gmail.com

Jake Hofman
Yahoo! Research

111 West 40th Street
New York, NY 10018

jhofman@gmail.com

Sergei Vassilvitskii
Yahoo! Research

111 West 40th Street
New York, NY 10018

sergeiv@gmail.com

ABSTRACT
Online social networking platforms regularly support hun-
dreds of millions of users, who in aggregate generate sub-
stantially more data than can be stored on any single phys-
ical server. As such, user data are distributed, or sharded,
across many machines. A key requirement in this setting is
rapid retrieval not only of a given user’s information, but
also of all data associated with his or her social contacts,
suggesting that one should consider the topology of the so-
cial network in selecting a sharding policy. In this paper
we formalize the problem of efficiently sharding large social
network databases, and evaluate several sharding strategies,
both analytically and empirically. We find that random
sharding—the de facto standard—results in provably poor
performance even when nodes are replicated to many shards.
By contrast, we demonstrate that one can substantially re-
duce querying costs by identifying and assigning tightly knit
communities to shards. In particular, we introduce a scal-
able sharding algorithm that outperforms both random and
location-based sharding schemes.

1. INTRODUCTION
As the popularity of online social networks such as Face-

book, Twitter and LinkedIn grows, it becomes increasingly
challenging to maintain scalable data infrastructures. In
particular, the amount of uploaded user content, including
photos, videos, and status messages, far exceeds the stor-
age capacity of any single machine, and thus user data must
necessarily be distributed, or sharded, across hundreds or
even thousands of servers.

Rapidly retrieving these data poses a particularly chal-
lenging problem, as one must support billions of queries
each day while balancing latency against memory and band-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The xth International Conference on Very Large Data Bases.
Proceedings of the VLDB Endowment, Vol. X, No. Y
Copyright 20xy VLDB Endowment 2150-8097/11/XX... $ 10.00.

width constraints. The difficulty of the retrieval task is com-
pounded by the fact that users often require access not only
to their own data, but also to that of all their social contacts.
Such neighborhood queries, in fact, are the key ingredient in
generating popular, personalized user feeds—which present
activities from a user’s social circle after filtering for recency
and relevance—and thus exert considerable strain on exist-
ing database systems.

This paper addresses the problem of sharding social net-
works so as to efficiently execute such neighborhood queries.
A simple and oft-used sharding strategy is to randomly as-
sign users to shards. At a high level, however, there are
two near-universal features of social networks that suggest
one can do substantially better. First, social networks gen-
erally contain densely connected communities of users. By
ensuring tightly knit clusters of users are assigned to the
same shard, one might greatly reduce the number of shards
accessed per query. Second, a relatively small number of “lo-
cally popular” users (i.e., those that are frequently queried
by certain communities) account for a disproportionally large
number of shard accesses. Neighborhood queries might thus
be further optimized by replicating local celebrities to the
appropriate shards, analogous to maintaining a cache of
frequently accessed resources. By leveraging these proper-
ties, network-aware sharding strategies offer the potential
for considerable gains over the alternatives.

Several recent papers have in fact demonstrated the ben-
efits of sharding network data based on correlated access
patterns. Karagiannis et al. [8] deploy and evaluate Hermes,
an optimization engine for large-scale enterprise email ser-
vices in which observed communication data are analyzed
to co-locate user data based on the implicit social graph.
Such co-location reduces storage costs as senders and re-
ceivers of an email can access the same physical version of
the message, obviating the need for each to keep separate
local copies. Agarwal et al. [1] detail and analyze a sim-
ilar system, Volley, for placing data across geo-distributed
servers. Like Hermes, Volley is based on an implicit network
extracted from access logs, and the system is shown to con-
siderably reduce storage and bandwidth requirements rela-
tive to a baseline strategy of placing resources close to their
primary requesters. Similarly, SPAR, a system developed
by Pujol et al. [14] is designed to facilitate strict co-locality

requirements in online social networks—where a user and
all its neighbors must reside on the same server—and the
objective is to minimize the number of necessary shards. In
addition to this work on social network databases, there is
an extensive literature on the more general problem of paral-
lelizing indexes for traditional information retrieval [12, 13],
though the topology of bipartite networks between queries
and terms differs substantially from the friendship graphs
central to our applications.

Past work has approached network-aware sharding from
an almost exclusively empirical perspective, focusing on both
storage and bandwidth. Here we formalize the problem as
minimizing average load across shards, and both derive an-
alytic results and present empirical evaluations. We show
that in graph models with strong community structure, ran-
dom shardings, though the de facto industry standard, are
far from optimal and lead to provably worst-case perfor-
mance. In contrast, by simply mapping communities in
these networks to shards, one can greatly reduce the average
load exerted by neighborhood queries.

As we show, finding optimal network-aware sharding strate-
gies is unfortunately an NP-complete problem. In light of
this limitation, however, we present a novel approximate
method for network sharding that scales to networks with
tens of millions of nodes and billions of edges. Our algo-
rithm proceeds in two steps: Densely connected regions are
first identified in the graph, and these communities are then
greedily assigned to shards while respecting capacity con-
straints. We note that though our community detection
method is tailored to network sharding, it in fact general-
izes and lends insight into the widely used label propagation
algorithm [15].

We validate this approach on two large internet-scale datasets,
and find that average query load is more than halved rela-
tive to random sharding. For the smaller of the two networks
we show that network-aware sharding additionally improves
upon geographic sharding, and for the larger we demonstrate
the ability to scale to networks that cannot be handled by
existing methods (e.g., METIS). Decrease in average load,
however, comes at the expensive of creating hotspots (i.e.,
shards with much higher-than-average loads), particularly
in the case of networks with extreme degree skew. We show
that this load imbalance is in large part mitigated by repli-
cating, or caching, a relatively small number of local celebri-
ties to shards, and moreover, this replication further reduces
average load.

Roadmap. We proceed by formally defining the prob-
lem in Section 2 and proving that random sharding is a
poor strategy for minimizing the average load. To motivate
alternate sharding strategies, we review the stochastic block
model for network structure in Section 3 and show that sig-
nificantly better shardings exist for networks following this
model (Theorem 6). After showing that networking shard-
ing is NP-complete in Section 4, we give a scalable, two-stage
approach for finding approximate solutions to the sharding
problem in Section 5. We then evaluate this method ex-
perimentally on two real-world networks in Section 6 and
discuss open questions in Section 7.

2. PROBLEM STATEMENT
Before formally defining the network sharding problem,

we introduce some notation. Let G = (V,E) be a directed
graph with n = |V | nodes, and m = |E| edges. Let N(i) =

{j : (i, j) ∈ E} denote the neighborhood of the i-th node,
and di = |N(i)| its degree. For S, T ⊆ V , where the subsets
are not necessarily disjoint, let E(S, T) = E ∩ (S × T) be
the set of edges from S to T . We abbreviate E({i}, T) as
E(i, T) and E(S, {j}) by E(S, j).

Given a graph G, our goal is to cover the n nodes of
G with T potentially overlapping sets S1, S2, . . . , ST . We
refer to each of these sets as a shard, and insist that each
shard contain at most M nodes. Semantically, each shard
corresponds to the subset of G that will be stored on an
individual machine. We refer to the collection of shards, S =
{S1, . . . , ST }, as a sharding. We note that if M · T = n, the
shards are necessarily disjoint; otherwise let ρ = MT/n > 1
define the replication ratio, which characterizes the level of
node duplication in the system.

As described in the introduction, the goal of the system
is to support an efficient execution of neighborhood queries,
queries that retrieve a node i together with all of its neigh-
bors. Given a sharding, S, there are many valid query plans
that define which shards to use for any particular neighbor-
hood query. Formally, a query plan is a set of indices:

Q = {eij} 1 ≤ i ≤ n, j ∈ i ∪N(i), eij ∈ {1, . . . , T}

that indicate where to access node j when executing a neigh-
borhood query for i. A query plan is considered valid for
a sharding S if it specifies nodes should be retrieved only
from shards on which they actually reside (i.e., j ∈ Seij).

From a query plan alone, it is easy to generate a compat-
ible sharding (i.e., a sharding for which the query plan is
valid). Namely, a node is assigned to a given shard if and
only if at least one neighborhood query expects to find it
there:

St =

j
∣∣∣∣∣∣ t ∈

⋃
i:j∈i∪N(i)

{eij}

 . (1)

We thus consider a query plan to be valid if the induced
shards satisfy the capacity constraints |St| ≤ M . We note
that in the case of a partitioning (i.e., ρ = 1), there is a
unique compatible query plan corresponding to looking up
each node on the shard containing it.

2.1 Objective
In practice, the overall performance of a query plan de-

pends on several factors, including the number of queries
per second handled by each shard, the latency of network
connections, and the total network bandwidth consumed. A
simple abstraction of these performance metrics is the aver-
age query load across shards. (We empirically examine the
full load distribution in Section 6 with the aim of finding
and remedying hotspots in the system.) Let λi be the rate
at which node i queries the system. Denote by Li,t(Q) the
load induced by user i on shard t under query plan Q:

Li,t(Q) =

{
λi, if t ∈

⋃
j∈i∪N(i){eij}

0, otherwise

Then the average load per shard is:

load(Q) =
1

T

T∑
t=1

n∑
i=1

Li,t(Q). (2)

In our analysis, it is helpful to consider the average load
generated by the user, which we call the cost of a query

plan:

cost(Q) =
1

n

n∑
i=1

T∑
t=1

Li,t(Q). (3)

Note that the two measures are scalar multiples of each other
as load(Q) = n

T
cost(Q). Minimizing cost is thus equivalent

to minimizing load, and so we switch between the two for-
mulations as convenient. For simplicity in our presentation
we assume that λi = λ for all i (i.e., that all users query
the system at the same, constant rate), but note that the
results extend to the heterogeneous user setting as well.

We are now ready to formally state the NetworkShard-
ing problem.

Problem 1 (NetworkSharding). Given a graph G,
the total number of shards, T , and a per shard capacity con-
straint M , find a valid query plan Q with minimal cost.

2.2 Random Sharding
Under our cost metric the worst one can do is to access a

node and each of its neighbors on distinct shards, in which
case the cost is approximately the average network degree.
This is exactly the situation that arises when one employs
the common strategy of randomly assigning nodes to shards
regardless of network structure. Theorem 2 formalizes this
result, showing that even with substantial replication ran-
dom sharding leads to near worst-case performance, gener-
ally requiring nodes to access distinct shards for each neigh-
bor.

Theorem 2. Let G be a graph with n ≥ 2 nodes, and
let T,M ≥ 1 be integers such that TM ≥ n. Consider a
random sharding of G into T shards with capacity M chosen
uniformly from all shardings that fill each shard to capacity,
and let Q denote an optimal query plan compatible with that
sharding. Then if ρ = TM/n is the replication ratio, the
expected cost of Q satisfies

1

n

n∑
i=1

di −
ρM

n
· 1

n

n∑
i=1

d3
i ≤ E [cost(Q)] ≤ 1 +

1

n

n∑
i=1

di (4)

where di is the degree of node i.

Before proving the theorem, we make two observations.
First, given a sharding, generating an optimal compatible
query plan is in general an NP-complete problem. In par-
ticular, it requires solving a set cover problem for each node
and its neighbors. Nevertheless, we show that this optimal
query plan is necessarily poor when the sharding is chosen
uniformly at random. Second, suppose di is O(logn) and the

replication ratio is as high as O(n
1/2). Then even for very

high memory capacities—for example, M = O(n
1/2−ε)—we

still find that random sharding leads to near worst-case per-
formance.

Proof. The upper bound follows trivially, since in the
worst case each node must access its neighbors and itself in
di + 1 different shards. Likewise, if M = 1 then each node
must choose different shards for each neighbor, and if M > n
then the left-hand side of (4) is negative, so the lower bound
holds in these degenerate cases.

To establish the lower bound for 2 ≤M ≤ n, fix a node i,
and consider the probability that i has at least two neighbors

in the t-th shard, St. Applying the union bound over all
pairs of i’s neighbors, we have

P(|N(i) ∩ St| ≥ 2) ≤

(
di
2

) (
n− 2

M − 2

)/(
n

M

)

≤ d2
i
M(M − 1)

n(n− 1)

≤
(
diM

n

)2

.

Consequently, the probability that i has at most a single
neighbor in any of the T shards is lower bounded by

1− T
(
diM

n

)2

= 1− ρMd2
i

n
.

When no shard contains more than a single neighbor of i,
i must access at least di shards. The expected number of
shards i accesses is thus lower bounded by

di −
ρMd3

i

n
.

The result now follows by averaging the expected number of
shard accesses over all nodes.

Even when a graph has substantial community structure,
Theorem 2 shows that random shardings, perhaps unsurpris-
ingly, perform poorly at neighborhood queries. In contrast,
as we show in Section 3, network-aware sharding strategies
can perform considerably better in the context of stochastic
block models.

3. STOCHASTIC BLOCK MODEL
Stochastic block models (SBMs) constitute a widely used

family of random networks with community structure [7].
We specify the generative process underlying this model in
Section 3.1 and show in Section 3.2 that a provably opti-
mal sharding strategy maps these communities to individ-
ual shards. This analysis informs our approximate solution
to the NetworkSharding problem, presented in detail in
Section 5.

3.1 Model Description
Stochastic block models [7] constitute a simple, yet widely

used, family of networks with community structure. In
these models, nodes belong to one of K communities, or
blocks, and the probability of an edge between any two
nodes depends only on their corresponding block assign-
ments. Specifically, the generative process for a network
with n nodes and K blocks is as follows:

• For each node i, independently roll a K-sided die with
bias ~π to determine the node’s block assignment zi ∈
{1, . . . ,K}.

• For each ordered pair of nodes (i, j), flip a coin with
bias θ+ (resp. θ−) for nodes in the same (resp. dif-
ferent) blocks to determine if an edge exists from i to
j.

Formally, for an SBM with parameters ~π and ~θ, the marginal
distributions for block assignments zi and edges indicated by

Aij are:

p(zi = k|~π) = πk (5)

p(Aij = 1|zi, zj , ~θ) =

{
θ+ if zi = zj
θ− if zi 6= zj

, (6)

where 0 < θ± < 1, 0 < πk < 1, and
∑K
k=1 πk = 1.

Networks generated under this model may loosely be char-
acterized as a mixture of Erdos-Renyi networks, with an
edge density θ+ within blocks and θ− between. In the as-
sortative case (θ+ > θ−), nodes tend to form more edges
within than between their blocks, resulting in dense “com-
munities.”

3.2 Analysis
Despite their simplicity, such models capture one of the

most salient features of social networks, namely the ten-
dency of individuals to cluster into communities. Moreover,
these models immediately illustrate the potential savings
from network-aware sharding strategies. By assigning all
nodes in a block to the same shard, a node need only access
a single shard to retrieve all its in-block neighbors. Thus, in
the worst case, nodes only access different shards for each of
their out-of-block neighbors, leading to a total cost approx-
imately equal to the average out-block degree. In contrast,
Theorem 2 shows that the expected cost of a random shard-
ing of this network—in fact, of any network—is approxi-
mately the average degree, which is generally substantially
larger than the average out-of-block degree.

While the naive sharding strategy of assigning blocks to
shards offers considerable gains over a random sharding, one
might reasonably wonder if there is further structure embed-
ded in these networks that one can exploit. Theorem 6 below
shows that in fact there is not, that the best one can do is
to simply leverage the first-order structure of these graphs.
While this result is quite believable, rigorously establishing
its validity requires a detailed understanding of the structure
of Erdos-Renyi graphs.

We proceed by first establishing in Theorem 4 that Erdos-
Renyi graphs have no discernible structure one can exploit
for sharding. This result follows from an observation by
Bollobás[3] that Erdos-Renyi graphs do not contain large,
isolated sets of nodes. Finally, by considering SBMs as a
mixture of Erdos-Renyi graphs of different densities, Theo-
rem 6 establishes our main result that SBMs are best parti-
tioned by assigning blocks to shards.

Theorem 3 (Bollobás[3]). Suppose δ = δ(n) and D =
D(n) satisfy δpn ≥ 3 logn, D ≥ 3 log(e/δ) and Dδn → ∞.
Then for every ε > 0, ∃N such that for n ≥ N and G ∼
G(n, p), G satisfies the following property with probability at
least 1− ε: For every U ⊆ V with |U | = dD/pe the set

Tu = {x ∈ V \ U |N(x) ∩ U = ∅}

has at most δn elements.

Theorem 3 shows that in most Erdos-Renyi graphs, every
suitably large set contains a neighbor of most nodes in the
network. Importantly, it is not only the case that most large
sets are well-connected to the rest of the network, but that
in most graphs, every large set is well-connected. It is this
subtle distinction that constitutes the primary difficulty in
establishing the result.

Theorem 4 below recasts the Bollobás result as a state-
ment about sharding, and can be seen as an analog of The-
orem 2. Whereas the former result established that com-
pletely random shardings lead to poor performance, the lat-
ter shows that completely random graphs can not be effi-
ciently sharded.

Theorem 4. Suppose p = p(n) satisfies p ≥ (6 logn)/n.
Then for every ε > 0, ∃N such that for n ≥ N , G ∼ G(n, p),
and positive integers T,M with TM = n, the cost of an
optimal query plan Q satisfies

c0 min(T, np) ≤ costopt(Q) ≤ c1 min(T, np) (7)

with probability 1− ε, where c0 = 1/50 and c1 = 3.

Remark 5. By assuming TM = n in Theorem 4, we ex-
clude the possibility of nodes residing on multiple shards.
That is, the result pertains to a traditional sharding in which
nodes are partitioned, but not replicated, across machines.

Proof. We start with the upper bound. The cost of any
query plan is trivially at most min(T, d̄ + 1), where d̄ is
the average degree of G. Let Ei be independent random
variables indicating whether the i-th edge is present in G.
Then d̄ = 2

n

∑
iEi. We can use the Chernoff bound to

conclude that:

P
(
d̄ > 2 · E[d̄]

)
≤

(e
4

)E[d̄]

Since E[d̄] = (n − 1)p ≥ 5 logn, we can conclude that
P
(
d̄ ≤ 2np

)
≥ 1 − ε/2 for n sufficiently large, establishing

the upper bound.
For the lower bound, suppose S is a sharding (S1, . . . , ST)

of G. Since we assume TM = n, S necessarily partitions
the nodes of G, and so there is a unique compatible query
plan, which we denote by Q. Since G is undirected, node i
accesses the t-th shard if and only if i ∈ N(St) (i.e., if i has
a neighbor in St). Thus, if IA(i) indicates whether i is in
the set of nodes A,

cost(Q) =
1

n

n∑
i=1

T∑
t=1

IN(St)(i)

=
1

n

T∑
t=1

n∑
i=1

IN(St)(i)

=
1

n

T∑
t=1

|N(St)|. (8)

In other words, the cost of the query plan can be expressed
as the sum of the sizes of each shard’s neighborhood.

We next apply Theorem 3 to show that every suitable
large node set has a large neighborhood. Specifically, take
δ = 1/2 and D = 6 in Theorem 3. Then for n sufficiently
large and almost all graphs G ∼ G(n, p), any vertex set U
of size d6/pe has |TU | ≤ n/2. So U has a neighborhood of
size satisfying

|N(U)| ≥ n− |U | − n

2

≥ n

2
− n

logn

≥ n

3
(9)

where the last inequality follows by taking n ≥ e6.

To finish the proof, we consider two cases. First suppose
M ≥ d6/pe, that the machines have relatively high memory.
Then by (9), for almost all graphs G and any sharding S
of G, each shard has |N(St)| ≥ n/3. Summing over the T
shards and applying (8), we have cost(Q) ≥ T/3. So, when
memory is high (and thus there are relatively few shards),
nodes tend to access a constant fraction of the shards. Al-
ternatively, suppose that the machines have small capacity,
that M < d6/pe. In this case, consider the union U of⌈
d6/pe/M

⌉
distinct shards, which, as above, must necessar-

ily have a large neighborhood. Moreover,∑
{t |St⊆U}

|N(St)| ≥ |N(U)| ≥ n

3
. (10)

That is, the neighborhood sizes of the constituent shards
sum to be relatively large. Finally, the number of such dis-
joint shard groupings one can form is⌊

T⌈
d6/pe/M

⌉⌋ ≥ T

(6/p+ 1)/M + 1
− 1

=
np

6 + p+Mp
− 1

≥ np

7 + d6/pep − 1

≥ np

14
− 1.

Thus, by (10),

cost(Q) ≥ np

42
− 1 ≥ np

50

for n sufficiently large.

As shown in Theorem 4, Erdos-Renyi graphs do not con-
tain any subtle structure that permits efficient sharding. Us-
ing this fact, Theorem 6 completes our analytic results by
demonstrating that SBMs are optimally partitioned by as-
signing nodes in a block to the same shard. For simplicity
we assume the blocks, instead of having binomial size, are of
fixed size n/K, and moreover, that the SBM is undirected.

Theorem 6. Suppose θ+(n) ≥ θ−(n) ≥ (6 logn)/n. Then
for every ε > 0, ∃N such that for n ≥ N , K ≥ 2 an integer,
G an undirected SBM graph with blocks of size exactly n/K,
and positive integers T,M with M ≥ n/K and TM = n, the
cost of an optimal (G,T,M)-query plan Q satisfies

c0 min(T, nθ−) ≤ costopt(Q) ≤ c1 min(T, nθ−) (11)

with probability 1− ε, where c0 = 1/50 and c1 = 3.

Proof. Without loss of generality, we assume that nodes
are numbered so that ones in the same community are ad-
jacent. For the upper bound, consider the sharding S in
which the first M nodes are placed into the first shard, the
second set of M nodes are put into the second shard, and
so on. Since communities, which have size n/K, are by
assumption smaller than the shards, this sharding results
in each community being spread over at most two shards.
Consequently, for the unique compatible query plan Q,

cost(Q) ≤ 2 +
1

n

n∑
i=1

|N−(i)| (12)

where N−(i) is the set of i’s neighbors outside of its block.
To bound the sum in (12), note that

E

[
n∑
i=1

N−(i)

]
= n2K − 1

K
θ−,

since each of the n2(K − 1)/2K inter-community edges is
present with probability θ− and appears in the sum once
from the perspective of each endpoint. Since the probability
of each edge being present is independent of the rest, an
application of Chernoff bounds allows us to conclude that:

P

(
1

n

n∑
i=1

|N−(i)| ≤ 2nθ−

)
≤
(e

4

)n2K−1
K

θ−
≤
(e

4

)n logn

Thus, for n sufficiently large, cost(Q) is bounded by 3nθ−
with probability at least 1 − ε/2. To complete the upper
bound, we note that trivially cost(Q) ≤ T .

For the lower bound, starting with G define the (random)

graph Ĝ by independently deleting each intra-community
edge with probability 1 − θ−/θ+. Let Q and Q̂ denote op-

timal query plans for G and Ĝ, respectively, Since we only
delete edges in constructing Ĝ,

cost(Q) ≥ cost(Q̂).

Moreover, any given intra-community edge is independently
present in Ĝ with probability θ+(θ−/θ+) = θ−. Since inter-
community edges are likewise independently present with
probability θ−, we have Ĝ ∼ G(n, θ−). Consequently, by
Theorem 4, for n sufficiently large,

P (cost(Q) ≥ c0 min(T, nθ−))

≥ P
(

cost(Q̂) ≥ c0 min(T, nθ−)
)

≥ 1− ε

2

which completes the proof.

The proceeding analysis suggests that when sharding real-
world networks, one should map tightly knit communities to
shards. In practice, however, this task is complicated by the
fact the we observe only the network, not the community
assignments. Below we show that finding such a sharding is
NP-hard and present an exact IP formulation for small-scale
solutions. In light of this difficulty we present an approxi-
mate method for efficient sharding in Section 5.

4. OPTIMAL SHARDING
We show that finding an optimal solution to the Net-

workSharding problem is NP-complete by a reduction from
the 3-Partition problem. We complement this analysis with
an Integer Programming formulation, which can be used to
solve small-scale versions of the problem. Unfortunately, we
find the linear program defined by relaxing the integrality
constraint of the IP results in a trivial solution, and is thus
not fruitful in developing an approximation algorithm.

Theorem 7. The NetworkSharding problem is NP-
complete.

Proof. The proof is by reduction from the 3-partition
problem [5]: Given a set A of 3T elements, a bound B ∈ Z+,
and an integral size wa for each element a ∈ A with B/4 ≤
wa ≤ B/2, find a partition of A into disjoint sets A1, . . . , AT

such that for each 1 ≤ i ≤ T ,
∑
a∈Ai wa = B. Note that

the sets Ai are necessarily of size 3 by the constraints on
the weights wa. We assume the sum of the weights B is
bounded by a polynomial in T—the problem remains hard
under this constraint.

From any instance of the 3-partition problem, consider the
following instance of the NetworkSharding problem. We
define the graph G as follows. With every element a ∈ A we
associate a clique Ga = (Va, Ea) on |Va| = wa nodes. Then
let the network G be the union of the individual cliques,
G = (∪aVa,∪aEa); and set the number of shards to T , each
with capacity B.

We claim that there is a 3-partition of A if and only if
the cost of the optimal sharding is exactly 1. Suppose first
that there is a 3-partition of A into A1, . . . , AT as above.
Then a valid sharding is obtained by setting St = ∪a∈AtVa.
It is easy to see that |St| =

∑
a∈At |Va| =

∑
a∈At wa = B,

and hence the capacity constraint is satisfied. Moreover, the
sharding cost is 1, since all of the neighbors of a node are
stored on the same partition.

Conversely, suppose there is a sharding of G with cost 1.
It must be the case that each clique Gi is assigned fully to
one shard, since any edge with endpoints across two shards
would increase the total cost beyond 1. Thus we can set
At = {aj : Gj ∈ St}. The capacity constraints imply
that

∑
a∈Aj wa = B and thus A1, A2, . . . , At form a valid

3-partition of A.

4.1 Integer Programming Formulation
Below we give the Integer Programming (IP) formulation

of the NetworkSharding problem. To do so, we introduce
several indicator variables. Let `i,t indicate whether the t-th
shard is accessed when querying the i-th node. Then we can
express the cost objective as:

1

n

n∑
i=1

T∑
t=1

`it.

Let eijt be the variable denoting whether node j ∈ {i} ∪
N(i) is looked up on shard t when node i is queried. In
the IP formulation we insist that eijt ∈ {0, 1}. We define
the consistency constraint, ensuring that every neighbor is
looked up on exactly one shard as:

T∑
t=1

eijt = 1 ∀i, j ∈ N(i) ∪ {i}.

Further, to make sure that `it correctly counts the number
of shards accessed, we have:

`it ≥ eijt ∀j ∈ N(i) ∪ {i}.

Finally, let rit indicate whether the i-th node is placed on
the t-th shard. Since we can only look up a node on shard
t if it is in fact stored there, we have

rjt ≥ eijt ∀i, j ∈ N(i) ∪ {i}.

The last constraint guarantees that the sharding does not
violate the memory constraints of the system. Let M be the
total amount of memory available on each shard, then:

n∑
i=1

rit ≤M ∀t.

Putting these constraints together, we have the full formu-
lation:

Minimize
1

n

n∑
i=1

T∑
t=1

`it

Subject to:

T∑
t=1

eijt = 1, ∀i, j ∈ N(i) ∪ {i}

`it ≥ eijt, ∀i, j ∈ N(i) ∪ {i}, t
rjt ≥ eijt, ∀i, j ∈ N(i) ∪ {i}, t
n∑
i=1

rit ≤M, ∀t

eijt ∈ {0, 1}, ∀i, j ∈ N(i) ∪ {i}, t

Although Integer Programs such as the one above can be
efficiently solved for small networks, this approach does not
obviously scale to networks with millions of nodes, even if
the total number of shards is small.

The standard approach is to then translate the Integer
Program into a Linear Program (LP). We accomplish this
by relaxing the integrality constraint on eijt to:

eijt ≥ 0, ∀i, j, t.

However, the resulting LP has a trivial solution. It is easy
to check that setting eijt = 1/T for all i, j, t satisfies all of
the constraints and leads to the optimal sharding cost of 1.

5. APPROXIMATE SHARDING
In this section we develop a scalable, two-stage method

to approximately minimize the cost of sharding a given net-
work. In the first stage we adopt a Bayesian approach to
identifying block structure in the network [6], employing
variational methods for approximate inference. In the sec-
ond stage we map these blocks to shards such that the shard-
ing cost is kept low while respecting memory constraints on
the shards. We then present a simple method for replicating
nodes to further reduce the sharding cost and, importantly,
to reduce hotspots among the shards.

5.1 Block inference
While there is a large literature on the task of commu-

nity detection, few of the developed methods scale to net-
works with millions of nodes and billions of edges. One
of the more popular methods that does accommodate net-
works of this scale is that of label propagation [15], wherein
nodes iteratively update their community assignments based
on a majority vote over their neighbors’ memberships. In
this section, we extend past work on community detectionto
scale to networks with billions of edges, showing that con-
ventional label propagation is a limiting case of a more gen-
eral framework, namely max-product variational inference
for stochastic block models. The result is a scalable vari-
ant of label propagation which takes a discounted vote over
neighbor memberships to compute updates. We review the
work presented in Hofman and Wiggins [6] below before dis-
cussing this previously unknown connection, and present the
result in Algorithm 1.

The block model presented in Section 3 provides a means
of generating random networks with local structure (i.e.,

blocks) ~z, given known parameters ~θ and ~π. Likewise, it
allows us to calculate the likelihood of observing a given

network and its block assignments under this model. Let
Bk = {i | zi = k} denote the set of nodes in the k-th block
and recall that E(Bk, Bl) is the set of directed edges from
block Bk to block Bl. The likelihood can be then be written
as:

p(A, ~z|~θ, ~π) = θ
m++
+ (1− θ+)m+−θ

m−+
− (1− θ−)m−−

K∏
k=1

π
nk
k ,

(13)

where m++ =
∑K
k=1 |E(Bk, Bk)| is the number of edges con-

tained within blocks, m+− =
∑K
k=1 nk(nk − 1) − m++ is

the number of non-edges contained within blocks, m−+ =
m −m++ is the number of edges between different blocks,
m−− = n(n − 1) − m − m−+ is the number of non-edges
between different blocks, and nk = |Bk| is the number of
nodes in the k-th block. In the case of sharding a network,
however, a complementary scenario emerges: we observe a
network A and would like to infer block assignments ~z (and

possibly the parameters ~θ and ~π).
In principle, then, one can solve the block inference prob-

lem by assuming a prior on the model parameters and com-
puting the posterior distribution over block assignments,
placing nodes in their most probable blocks. Using Bayes’
rule, the posterior over block assignments and parameters
given the observed network is

p(~z, ~θ, ~π|A) =
p(A, ~z|~θ, ~π)p(~θ, ~π)

p(A)
, (14)

where p(~θ, ~π) quantifies our beliefs about parameter values
prior to observing the network, and

p(A) =
∑
~z

∫
d~θ

∫
d~πp(A, ~z|~θ, ~π)p(~θ, ~π) (15)

is the marginal likelihood of observing the network. The Ap-

pendix fully describes our choice of conjugate priors over ~θ
and ~π—namely Beta and Dirichlet distributions, respectively—
such that the integrals in the marginal likelihood are easily
calculated. Unfortunately, however, the sum over all possi-
ble block assignments ~z in Equation (15) is fully coupled,
containing Kn terms and rendering exact calculation of the
posterior intractable for even moderately sized networks.

This difficulty motivates the variational mean-field ap-
proach to approximating the posterior presented in Hofman
and Wiggins [6], a method that performs well in a num-
ber of inference tasks [2]. Variational methods provide an
approximation to intractable sums such as Equation (15)
by rephrasing the problem as one of optimization over a
constrained family of posterior distributions. Stated more
precisely, we search for a fully factorized distribution that is
close to the true posterior under the Kullback-Leibler (KL)
divergence, an (asymmetric) measure on distributions de-
veloped in the information theory literature [4]. That is, we
look for a fully factorized distribution of the form

q(~z, ~π, ~θ) =

[
N∏
i=1

qzi(zi)

]
q~θ(
~θ)q~π(~π) (16)

that minimizes DKL
[
q(~z, ~π, ~θ)||p(~z, ~θ, ~π|A)

]
, where the di-

vergence DKL[q||p] ≡
∑
x q(x) ln q(x)

p(x)
is non-negative and

zero if and only if q and p are identical.

While we can neither calculate nor minimize this diver-
gence directly—as it is a functional of the unknown posterior—
we can rewrite the divergence as follows:

DKL
[
q(~z, ~π, ~θ)||p(~z, ~θ, ~π|A)

]
= FA[q] + ln p(A), (17)

where

FA[q] = −
∑
~z

∫
d~θ

∫
d~πq(~z, ~π, ~θ)

ln p(A, ~z|~θ, ~π)p(~θ, ~π)

q(~z, ~π, ~θ)
(18)

is termed the variational free energy. Equation (17) is easily
verified by substituting the free energy into the right hand
side, combining integrands, and employing Bayes’ rule. As a
result of this identity, minimization of the free energy FA[q]
is equivalent to minimization of the KL divergence, as the
two differ by the problem-specific constant ln p(A).

Furthermore, the sum in the mean-field variational free
energy FA[q] decouples yielding a tractable objective func-
tion, owing to the factorized form of Equation (16). To see
this, recall the form of the likelihood from Equation (13)
and examine the network-dependent term in the integrand.
Substituting the likelihood and taking the logarithm reveals
that the free energy is linear in the expected edge counts
m++,m+−,m−+, and m−− under the approximate poste-

rior q(~z, ~π, ~θ). As this distribution is fully factorized, the
resulting expectations are pairwise over node assignments,
and thus inexpensive to compute.

The task of exactly calculating the posterior p(~z, ~θ, ~π|A)
can be replaced by that of finding a close approximate pos-

terior q(~z, ~π, ~θ) that minimizes the free energy FA[q], and
thus the KL divergence. Minimization of the free energy is
achieved by iterative coordinate descent over the factors in
Equation (16), a procedure guaranteed to find a local opti-
mum of FA[q]. The resulting algorithm—termed variational
Bayes—is an extension of expectation-maximization (EM),
involving iterative updates of the variational distributions
over parameters and block assignments until convergence in
the free energy.

Upon convergence, variational Bayes provides an approxi-
mate distribution over block assignments for each node, from
which we can assign each node to its most probable block.
Unfortunately in the large-scale network setting of interest
here we cannot directly apply variational Bayes, as simply
storing these distributions in memory is prohibitive—for ex-
ample, with 10 million nodes and 10,000 blocks, the required
storage exceeds that of most commodity machines. To scale
variational inference to networks of this size and complete
the connection with traditional label propagation, we dis-
pense with storage of the full distributions qzi(zi) and in-
stead calculate only the most probable node assignment ẑi
for each node, known as max-product inference [2].

This modification, while relatively simple, admits a novel
and intuitive reinterpretation of approximate Bayesian infer-
ence for stochastic block models as a framework for general-
ized label propagation. This previously unobserved result,
detailed in Algorithm 1, proceeds as follows: in the first
step, each node takes a discounted vote over its neighbors’
block assignments to determine an updated block assign-

ment; and in the second, the weights J, J ′ and ~h determining
these discounts are updated via expectations over the varia-

tional distributions on ~θ and ~π. As shown in the Appendix,
these expectations are easily calculated as functions of the

estimated edge counts within and between blocks (m++ and
m−+) and the block sizes ~n.

Algorithm 1 VBLabelProp

1: Randomly initialize the block assignments ~z
2: repeat
3: Based on the current block assignments, compute

weights J , J ′, and h, which are functions of the in-
ferred edge/node counts m++,m−+, and ~n:

J ← Eq~θ
[
ln

θ+(1−θ−)

θ−(1−θ+)

]
J ′ ← Eq~θ

[
ln

1−θ−
1−θ+

]
~h← Eq~π

[
ln 1

~π

]
4: Update each node’s community assignment by a dis-

counted vote over its neighbors assignments:
5: for i = 1→ N do
6: zi ← argmax

k
Jwk − J ′(nk − δzi,k)− hk

where wk = |E(i, Bk)|+ |E(Bk, i)| is the total num-
ber of in and out edges between the i-th node and
block Bk

7: end for
8: until convergence in FA[q]

In the limiting case where blocks are assumed to be of
uniform size (i.e., nk = n/K), no discounting is applied and
we recover conventional label propagation. The algorithm,
termed VBLabelProp, has a low memory footprint—linear in
the number of nodes and edges in the network—and its run-
time scales linearly with the number of edges. We provide
further details in the Appendix.

5.2 Partitioning Blocks
VBLabelProp provides a scalable method for inferring block

assignments in large-scale networks to identify tightly knit
groups of nodes. As discussed in Section 3, by storing these
nodes on the same shard we greatly reduce the number of
shards accessed when querying a node’s neighbors. In prac-
tice, however, constructing this mapping is non-trivial, as
the inferred sizes of the largest blocks in social network data
can substantially exceed the available capacity of any sin-
gle machine. Moreover, while Theorem 6 shows that SBMs
have no second order structure one can exploit for shard-
ing, in real-world networks we expect there is some gain
to be had by intelligently placing well-connected blocks on
the same shard. As such, we present BlockShard, a greedy
method for zero-replication partitioning of blocks to shards
that maintains a low sharding cost. We defer the discussion
of replicating nodes to Section 5.3.

The inputs to BlockShard include the adjacency matrix A,
the blocks B produced by VBLabelProp, and the maximum
shard capacity M . The output is a mapping from nodes
to shards, with each node appearing only on a single shard,
which consequently induces a unique compatible query plan.

The intuition behind BlockShard is to greedily map blocks
to shards to minimize the current sharding cost. We start
by allocating the largest block to the first shard and, if nec-
essary, overflowing nodes to adjacent shards, filling each to
capacity before moving to the next. Subsequent blocks are
greedily selected to have highest average in-degree from the
current, partially filled shard—or if the current shard is
empty, the largest unallocated block is chosen. This con-
dition may be interpreted as selecting the most “popular”

Algorithm 2 BlockShard

1: Input A,B,M,S
2: Sort blocks by decreasing size |Bk|
3: Start with the first shard: St ← S1

4: while unallocated nodes do
5: if current shard St is empty then
6: Select the largest unallocated block Bk
7: else
8: Select the block with the largest in-degree from

shard St: Bk ← argmax
B

1
|B| |E(St, B)|

9: end if
10: Sort nodes i ∈ Bk by decreasing in-degree |E(St, i)|

from shard St
11: Place nodes in shards starting with St, overflowing to

adjacent shards as needed
12: Update St to the shard containing the last node allo-

cated
13: end while

block from the perspective of nodes currently allocated to
the shard. If the block size exceeds remaining shard ca-
pacity, nodes within the selected block are ordered by their
in-degree from the current shard and accordingly overflowed
to adjacent shards.

Pseudocode for BlockShard is given in Algorithm 2. An
efficient implementation is achieved by maintaining an up-
datable heap over nodes, keyed by their in-degrees from the
current shard. Runtime is then linear in the number of edges
in the network, as desired for sharding large networks.

5.3 Replicating Nodes
When the total system capacity M ·T exceeds the number

of nodes n, utilizing excess memory to replicate data offers
the potential benefits of decreasing the cost of reads and
improving the system’s overall fault tolerance. We quantify
the amount of excess memory in the system via the repli-
cation ratio ρ = TM/n ≥ 1, and present a simple method
to add replication to any valid partitioning of nodes across
shards—such as that produced by BlockShard.

One reasonable approach to replication is to simply copy
the globally most accessed nodes to the excess space on each
shard. While providing some improvement in performance,
we opt for a variant of this strategy that considers the lo-
cal structure of each shard, filling excess memory with “lo-
cally popular” nodes on each shard. In particular, when
using BlockShard to partition nodes, we first run the algo-
rithm with an artificially lower shard capacity M ′ = dn/T e
to obtain a partial sharding. Then for each partially filled
shard St, we rank nodes by their in-degree |E(St, i)| from the
shard, filling it with the most accessed nodes. Pseudocode
for the replication scheme, NodeRep, is given in Algorithm 3.

Algorithm 3 NodeRep

1: Input A,S,M
2: for shard St ∈ S do
3: while current shard St is not full do
4: Select a node current not in St with the largest in-

degree |E(St, i)| from shard St
5: Allocate the selected node to shard St
6: end while
7: end for

To construct a valid query plan Q from the output of
NodeRep, we avoid solving the costly set cover problem and
instead build an index as follows. Consider the initial par-
titioning of nodes across shards (i.e., before replication) to
define a node’s primary shard. When executing a neighbor-
hood query for node i, as many neighbors as possible are
retrieved from i’s primary shard, with the remaining ones
fetched from their respective primary shards. As we show
below, this method of replication is particularly effective
for heavily skewed degree distributions and achieves a sub-
stantial reduction in both average load and hotspots among
shards.

6. EMPIRICAL EVALUATION
We evaluate the performance of the approximate block

sharding method developed above on two large-scale social
network datasets. We show that network-aware shardings
provide a reduction in average system load over both random
sharding and sharding based on geography. We examine the
effect of replication on system performance, showing that
even a small degree of node duplication offers large savings
in cost for both random and network-aware shardings. We
conclude with a discussion of the variance in load over shards
introduced by network sharding.

6.1 Data
We examine two online social networks appropriate for the

NetworkSharding problem, as both contain a large num-
ber of nodes and edges, and require queries over node neigh-
borhoods. Specifically, we look at the blogging community
LiveJournal and the microblog platform Twitter, in which
individuals frequently access activity feeds constructed from
their local neighborhood of contacts.

LiveJournal. Our first real-world dataset comes from a
2004 snapshot of LiveJournal [11], a free online community
that allows members to maintain and share journals and
blogs. The full network contains over 5.1 million nodes con-
nected by more than 150 million directed edges that specify
for each user a set of “friends” whose blogs or journals she
“follows”. In addition to the network structure, the dataset
contains a subset of city, state, and country information for
3.1 million users. We restrict our attention to the network
induced by the 1.6 million users for whom all three of these
fields are specified.

Twitter. The second network we investigate is a publicly
available snapshot of the Twitter social graph [10]. The
snapshot, completed in July of 2009, contains more than 41
million user profiles and 1.4 billion directed edges connecting
these profiles. Users post short status updates and subscribe
to—or “follow”—other users to receive their updates.

Both networks contain a giant (connected) component
comprising more than 95% of all nodes in their respective
networks. In representing the following relationships in these
networks, we use the convention that an edge from i to j in-
dicates that i follows j. In both networks, constructing a
user’s feed requires a query over recent activity from that
user and all of her out-neighbors.

Other than obvious differences in scale, a significant dis-
tinction between the LiveJournal and Twitter networks is
the skew in their degree distributions. In particular, the
Twitter community contains a small number of highly pop-
ular “celebrities” with millions of followers, whereas the
most popular profiles on LiveJournal have fewer than twenty

thousand subscribers. This difference will become relevant
when examining the effects of node replication on system
performance.

6.2 Results
We examine the performance of various sharding schemes

on the LiveJournal and Twitter networks. For LiveJour-
nal, we compare random sharding and geographic sharding
to BlockShard using both VBLabelProp and METIS to in-
fer block structure. We repeat this analysis for the Twitter
network, omitting geographic sharding and METIS due to
lack of location information for users and prohibitive space
constraints given the size of the network, respectively. For
geographic sharding, we key each user by a concatenation
of their country, state, and city, sort users by this key, and
vertically fill shards in this order.

For both networks we assume that each profile requires
roughly 1MB of in-memory space and that shard storage
is on the order of 40GB of RAM, leaving a capacity of
roughly 40k nodes per shard. As a result, the LiveJournal
network requires 50 shards, and Twitter requires 1000, at
zero replication (ρ = 1.0). We set the number of blocks for
VBLabelProp to ten times the number of shards. All meth-
ods are evaluated in terms of average load and load balance,
both with and without replication.

6.2.1 Average load
We first examine the average load, or equivalently, the

sharding cost in the zero replication setting (ρ = 1.0). Fig-
ure 1 demonstrates that network-aware sharding offers a
substantial reduction in cost over random sharding as well
an improvement over geographic sharding. For example,
randomly sharding LiveJournal results in an average access
of 7 shards per query. While geographic sharding nearly
halves this cost, network-aware shardings offer further im-
provements with VBLabelProp and METIS accessing 3.2 and
2.6 shards on average, respectively. Likewise, randomly
sharding Twitter results in the average access of 26 shards
per query, while VBLabelProp accesses 9 shards on aver-
age. In other words, network-aware shardings result in an
approximately 60% reduction in average system load over
Random. The observed difference between the two network-
aware sharding methods for LiveJournal is likely due to
the relatively balanced block sizes obtained by METIS. We
would expect similar results for Twitter, however the mem-
ory requirements for METIS are prohibitive given 32GB of
RAM.

Replication. Next we investigate performance when ex-
cess storage is used to accommodate popular nodes repli-
cated by NodeRep. We vary the replication ratio ρ from
1.0 (zero replication) to 1.45 (45% replication) for all ex-
periments and examine the relative and absolute changes in
cost. Note that we consider “horizontal scaling,” wherein
an increase in ρ corresponds to an increase in the number
of shards T = T0ρ, while holding the capacity per shard M
fixed.

Figure 1 shows the change in sharding cost for both Live-
Journal (center) and Twitter (right) as we vary the repli-
cation ratio, with the points on the far left corresponding
to the zero replication (ρ = 1.0) results in the left chart of
Figure 1. Notably, a small amount of replication in random
sharding (1%) for Twitter results in a large reduction in
sharding cost (23%), which quickly asymptotes as replica-

C
os

t

5

10

15

20

25

●

●
●

●

Ran
do

m
Geo

VBLa
be

lP
ro

p
M

et
is

● LiveJournal

Twitter

Replication ratio

S
ha

rd
in

g
co

st

3

4

5

6

LiveJournal

● ● ● ● ●

1.00 1.02 1.04 1.06 1.08

● Random

Geo

VBLabelProp

Metis

Replication ratio

S
ha

rd
in

g
co

st

10

15

20

25

Twitter

●

●
●

●
●

1.00 1.02 1.04 1.06 1.08

● Random

VBLabelProp

Figure 1: Sharding cost across methods. The left panel shows a comparison across methods for both networks
at zero replication. The center and right panels show variation in cost as replication is added to the system
for LiveJournal and Twitter, respectively.

tion increases further. That is, assigning even a small num-
ber of local celebrities to shards results in substantial gains.
In contrast, random sharding for LiveJournal admits a rel-
atively modest boost from replication. Intuitively these dif-
ferences are due to the degree of skew in the two networks—
while there is a relatively small population of highly popular
celebrity accounts in Twitter, LiveJournal has a less heavy-
tailed in-degree distribution.

Geographic and network-aware shardings also benefit from
node replication, although to a lesser extent than Random, as
these methods have already captured a substantial amount
of network structure. Although omitted in the figure, as
replication is increased beyond the point of ρ = 1.09, per-
formance degrades for both methods: with a fixed shard ca-
pacity, increasing ρ effectively reduces the primary storage
available on each shard, resulting in fragmentation of local
structure and an increase in cost. Thus, a certain degree of
replication improves performance across methods, replica-
tion provides diminishing returns from 1% (ρ = 1.01) to 9%
(ρ = 1.09), after which replication tends to slightly degrade
system performance.

6.2.2 Load Balance
In addition to evaluating system performance in terms of

mean load, we now examine load balancing—or expected
distribution of load across shards—for the various sharding
techniques. Recalling Section 2.1, we calculate the load on
an individual shard via the sum of rates over all nodes that
access that shard, i.e. Lt =

∑
i Li,t. Intuitively this cap-

tures the expected number of nodes that access shard St
per unit time. Calculating these rates exactly would require
knowledge of user logins and accesses to activity feeds—
information which unfortunately is not provided in either
data set. Thus we approximate these rates by assuming a
uniform query rate across users.1

As we saw above, network-aware sharding more than halves
the mean load across shards compared to random shard-
ing. However, as shown in Figure 2, this reduction in mean
load comes at an increase in variance over random sharding.
Specifically, we compute the standard deviation over shards
normalized by the mean load—termed the “load dispersion”—

1Load results are indistinguishable under alternate approx-
imations to query rate, including degree-correlated rates
(λi ∝ log di) and rates proportional to post volume (i.e.
number of tweets for Twitter profiles).

and plot the results for zero replication in the left panel of
Figure 2.

As expected, we see that random sharding has the low-
est relative variance across shards followed by geographic
sharding. Further details of the cumulative load distribu-
tion across shards at zero replication are given for Live-
Journal and Twitter in the center and right panels of Fig-
ure 2. Increased variance notwithstanding, we see that un-
der network-aware sharding almost all shards (greater than
95%) experience less load compared to random and geo-
graphic sharding.

The observed skew under Random is, once again, explained
by examining the role of celebrities in the system. Twitter
contains an exceedingly small number of profiles (< 100)
with hundreds of thousands of followers, after which profile
popularity rapidly decreases, with tens of millions of profiles
followed by at most a few users. Thus the small fraction
(≈ 10%) of shards which host these celebrities receive a dis-
proportionate amount of traffic, accounting for the observed
variance.

Replication. Node replication mitigates the load imbal-
ance noted above (Figure 3). As revealed in the difference
between the left (LiveJournal) and right (Twitter) panels, a
small degree of replication (1%) drastically reduces variance
in load for Twitter across both sharding methods, whereas
LiveJournal sees more modest improvements. Again, this
difference is due to the high degree of skew in popularity
on Twitter, where we see that even random sharding ex-
periences a reasonable degree of variance in per-shard load.
Similar to the effect of replication on mean load, we see di-
minishing returns of increasing replication on load balance.

In summary, while the improvement in mean load achieved
by network-aware sharding comes at the expense of a slight
degradation in load balance, introducing a small degree of
replication largely compensates for this effect.

7. DISCUSSION
We have formally defined the NetworkSharding prob-

lem and shown that considering network structure signifi-
cantly improves system performance. Our results hold both
in theory, where we show that network-aware sharding re-
sults in substantial savings over random sharding for net-
works generated using an SBM; and in practice, for both
the LiveJournal and Twitter networks, where network-aware

Lo
ad

 d
is

pe
rs

io
n

0.0

0.5

1.0

1.5

2.0

2.5

●

● ●
●

Ran
do

m
Geo

VBLa
be

lP
ro

p
M

et
is

● LiveJournal

Twitter

Load

F
ra

ct
io

n
of

 s
ha

rd
s

0.2

0.4

0.6

0.8

1.0

LiveJournal

105 105.1 105.2 105.3 105.4 105.5

Metis

VBLabelProp

Geo

Random

Load

F
ra

ct
io

n
of

 s
ha

rd
s

0.2

0.4

0.6

0.8

1.0

Twitter

105 105.5 106 106.5 107

VBLabelProp

Random

Figure 2: Variation in and distribution of load across shards for zero replication. The left panel summarizes
standard deviation in load, normalized by mean load, across methods for both networks. The center and right
panels show the full cumulative distributions of per-shard load for LiveJournal and Twitter, respectively.

Replication ratio

Lo
ad

 d
is

pe
rs

io
n

0.05

0.10

0.15

0.20

0.25

LiveJournal

●

●

●

●

●

1.00 1.02 1.04 1.06 1.08

0.5

1.0

1.5

2.0

2.5

Twitter

●

●
●

●
●

1.00 1.02 1.04 1.06 1.08

● VBLabelProp

Metis

Geo

Random

Figure 3: Effect of replication on load balance. The left and right panels show the variation in load dispersion
as replication is added to the system for LiveJournal and Twitter, respectively.

sharding more than halves the average load. Moreover, we
find that allowing a small amount of replication further re-
duces mean load while improving load balance.

Many interesting questions remain. Experiments show
that the decrease in average load was accompanied by an
increase in variance, and that, for a handful of shards, load
increases under network-aware sharding. We leave open the
problem of formulating sharding strategies that improve the
load for all of the shards. Further possible improvements in-
clude online implementations capable of updating sharding
assignments as the network evolves.

8. REFERENCES
[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu,

A. Wolman, and H. Bhogan. Volley: Automated data
placement for geo-distributed cloud services. In
Seventh USENIX Conference on Networked Systems
Design and Implementation, pages 2–2, 2010.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, New York, 2006.

[3] B. Bollobás. Random Graphs, volume 73. Cambridge
University Press, 2001.

[4] T. Cover and J. Thomas. Elements of Information
Theory, volume 6. Wiley Online Library, 1991.

[5] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-completeness. WH Freeman & Co. New York, NY,
USA, 1979.

[6] J. M. Hofman and C. H. Wiggins. Bayesian approach

to network modularity. Physical Review Letters,
100:258701, Jun 2008.

[7] P. Holland. Local structure in social networks.
Sociological Methodology, 7:1–45, 1976.

[8] T. Karagiannis, C. Gkantsidis, D. Narayanan, and
A. Rowstron. Hermes: clustering users in large-scale
e-mail services. In First ACM Symposium on Cloud
Computing, pages 89–100, 2010.

[9] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing,
pages 1–13, Washington, DC, USA, 1998.

[10] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In
Nineteenth ACM International Conference on World
Wide Web, pages 591–600, 2010.

[11] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social
networks. Proceedings of the National Academy of
Sciences, 102(33):11623–11628, Aug. 2005.

[12] A. Moffat, W. Webber, and J. Zobel. Load balancing
for term-distributed parallel retrieval. In Proceedings
of the 29th annual international ACM SIGIR
conference on Research and development in
information retrieval, SIGIR ’06, pages 348–355, New
York, NY, USA, 2006. ACM.

[13] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates.
A pipelined architecture for distributed text query
evaluation. Inf. Retr., 10:205–231, June 2007.

[14] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: scaling online social networks. In
ACM SIGCOMM Conference, SIGCOMM ’10, pages
375–386. ACM, 2010.

[15] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Physical Review E, 76:036106,
Sep 2007.

APPENDIX
We provide details of the VBLabelProp algorithm omitted
from Section 5.1 for brevity. We specify explicit functional
forms for the variational free energy, the distributions over
parameters, and the expectations with respect to these dis-
tributions.

First, we note that the variational free energy in Equa-
tion (18) can be written as the sum of three terms, all expec-

tations with respect to the variational distribution q(~z, ~π, ~θ):

FA[q] = − Eq
[
ln p(A, ~z|~θ, ~π)

]
− Eq

[
ln p(~θ, ~π)

]
− Eq

[
ln q(~θ, ~π)

]
,

where the first term is the expected complete-data likeli-
hood, the second is the cross-entropy between the prior

p(~θ, ~π) and q(~z, ~π, ~θ), and the third is the entropy of the
variational distribution itself. Taking the logarithm of Equa-
tion (13), expressing all edge counts in terms of m++ and
sums over nk, and collecting common terms, we can write
the complete-data likelihood as

ln p(A, ~z|~θ, ~π) = Jm++ − J ′
K∑
k=1

nk(nk − 1)−
K∑
k=1

hknk

+ m ln θ− + [n(n− 1)−m] ln (1− θ−)

where we have defined the weights

J = ln
θ+(1− θ−)

θ−(1− θ+)

J ′ = ln
1− θ−
1− θ+

hk = ln
1

πk

to be positive for the assortative case (θ+ > θ−). Intuitively
we interpret these as follows: J weights the local term in-
volving edges within blocks, while J ′ and hk balance this
term by global terms based on the number of possible edges
within blocks and block sizes, respectively.

As mentioned in Section 5.1, we assume priors which are
conjugate to the specified likelihood terms—namely Beta
distributions over θ+ and θ−, and a Dirichlet distribution
over ~π. Specifically, the Beta distribution with hyperpa-
rameters α and β is given by

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1

while the Dirichlet distribution with hyperparameters ~α is
given by

p(~π) =
1

Γ(~α)

K∏
k=1

π
αk−1
k ,

where B(α, β) and Γ(~α) are the beta and gamma special
functions, respectively. As these conjugate prior distribu-
tions are in the same family as the resulting posteriors, cal-
culating posteriors against their respective likelihoods in-
volves simple algebraic updates—rather than potentially costly
numerical integration—which may be interpreted as adding
counts (from observed data) to pseudo-counts (specified by
hyperparameter values) to determine updated hyperparam-
eter values.

Likewise, expectations under these distributions have rel-
atively simple functional forms. Specifically, when calculat-
ing the weights given above, we have expectations of log-
parameter values, given by the following:

E~θ∼Beta(α,β) [ln θ] = ψ(α)− ψ(α+ β)

and

E~π∼Dir(~α)

[
ln

1

πk

]
= ψ(αk)− ψ(

K∑
k=1

αk),

where ψ(x) is the digamma function. Using the above, then,
we have the following values for the expected weights J, J ′,

and ~h, as abbreviated in Algorithm 1 for VBLabelProp:

Eq~θ [J] = ψ(m++ + α+)− ψ(m+− + β+)

− ψ(m+− + α−) + ψ(m−− + β−)

Eq~θ
[
J ′
]

= ψ(m−− + β−)− ψ(m−+ + α− +m−− + β−)

− ψ(m+− + β+) + ψ(m++ + α+ +m+− + β+)

Eq~π [hk] = ψ(nk + αk)− ψ(

K∑
k=1

αk),

where α+ and β+ are the hyperparameters for the prior on
θ+; α− and β− are the hyperparameters for the prior on θ−;
and ~α are the hyperparameters for the prior on ~π.

