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Abstract

Logarithmic Sobolev inequalities are a well-studied technique for estimating rates of conver-
gence of Markov chains to their stationary distributions. In contrast to continuous state spaces,
discrete settings admit several distinct log Sobolev inequalities, one of which is the subject of
this paper. Here we derive modi!ed log Sobolev inequalities for some models of random walk,
including the random transposition shu"e and the top-random transposition shu"e on Sn, and
the walk generated by 3-cycles on An. As an application, we derive concentration inequalities
for these models.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Introduced in 1975 [18], logarithmic Sobolev inequalities can be used to estimate
rates of convergence of Markov chains to their stationary distributions. While in Rn
there are several equivalent formulations of the log Sobolev inequality, in discrete
settings these formulations lead to distinct inequalities (see e.g. [7]). One such modi-
!cation, considered in [17, 24, 30], is the topic of this paper.
In Section 2, we introduce the notation and review preliminary results relating log-

arithmic Sobolev inequalities to rates of convergence. As a !rst example, we discuss
previous estimates for modi!ed log Sobolev inequalities on the 2-point space (see
e.g. [7]).
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Section 3 presents the main results of this paper: modi!ed logarithmic Sobolev in-
equalities for some models of random walk, including the random transposition shu"e
and the top-random transposition shu"e on the symmetric group Sn, and the shu"e
generated by 3-cycles on the alternating group An. As an application of these results we
derive sharp bounds on rates of convergence. Previously, convergence results for these
models had been obtained by Fourier analysis [10,13,26]. In this section we also show
that a generic r-regular graph has modi!ed log Sobolev constant much smaller than its
spectral gap. After completing this work, it came to our attention that Gao and Quas-
tel [17] had derived the modi!ed log Sobolev inequality for the random transposition
model.
Like log Sobolev inequalities, modi!ed log Sobolev inequalities can be obtained via

comparison chains. Section 4 outlines this method, and analyzes a perturbation of the
top-random transposition shu"e that cannot be realized as a walk on a group, making
it di#cult to study by other methods.
It is well known that the Herbst argument shows that log Sobolev inequalities imply

concentration inequalities (see e.g. [7, 22]). As an application of our results, in Section
5 we present concentration inequalities for the models of random walk considered
earlier.
The recent work on modi!ed log Sobolev inequalities [7, 17] illustrates the fact that

for non-di$usion Dirichlet forms, modi!ed log Sobolev inequalities can give better
results than the classical log Sobolev inequality. It is worth pointing out that the reason
behind this does not seem well understood. There are, however, some drawbacks to
the modi!ed versions: First, they seem inadequate to control convergence in l2; and
second, the comparison techniques seem to be much more restricted.

2. Background

This section introduces the notation used throughout the paper, and reviews results
relating Sobolev inequalities to convergence rates. After introducing the notation for
Markov chains, we de!ne mixing time, which intuitively is the time necessary for
a chain to approach equilibrium. We then de!ne Dirichlet forms and indicate how
they are in turn used to de!ne the spectral gap and the log Sobolev inequalities, two
well-studied techniques for bounding mixing time. For more detailed coverage of this
material, see [12, 28, 29].
Next we present the modi!ed log Sobolev inequality, a discrete state-space variant

of the log Sobolev inequality, which was previously considered in [17, 24, 30]. We
recall that the modi!ed log Sobolev constant controls entropy, which in turn controls
mixing time. We also present two properties that the log Sobolev and the modi!ed log
Sobolev inequalities share, namely that they both behave well under products and that
they satisfy similar di$erence equations.
Finally, we discuss modi!ed log Sobolev inequalities on the 2-point space and related

spaces, further considered in [7]. The asymmetric 2-point space is one of the simplest
examples in which we can distinguish between the log Sobolev and modi!ed log
Sobolev inequalities.
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2.1. Preliminaries

A Markov chain on a !nite state space X can be identi!ed with a kernel K satisfying

K(x; y)¿ 0;
∑

y∈X

K(x; y) = 1:

The associated Markov operator is de!ned by

Kf(x) =
∑

y∈X

f(y)K(x; y):

The iterated kernel Kn is de!ned by

Kn(x; y) =
∑

z∈X

Kn−1(x; z)K(z; y)

and can be interpreted as the probability of moving from x to y in exactly n steps.
We say that a probability measure ! on X is invariant with respect to K if

∑

x∈X

!(x)K(x; y) = !(y):

That is, starting with distribution ! and moving according to the kernel K leaves the
distribution of the chain unchanged. Throughout, we will assume that K is irreducible:
For each x; y∈X there is an n such that Kn(x; y)¿ 0. Under this assumption K has a
unique invariant measure ! and !(x)¿ 0 for x∈X. It will be useful to further restrict
ourselves to the case where (K; !) is reversible, that is K=K∗ is a self-adjoint operator
on the Hilbert space L2(!). This is equivalent to requiring that the detailed balance
condition holds

K(x; y)
!(y)

=
K(y; x)
!(x)

:

The kernel K describes a discrete-time chain, which at each time step moves with
distribution according to K . Alternatively, we can consider the continuous-time chain
Ht , which waits an exponential time before moving. More precisely Ht = EKNt , where
Nt has independent Poisson distribution with parameter t. The law of Ht is then given
by

Ht(x; y) = e−t
∞
∑

n=0

tn

n!
Kn(x; y):

In terms of Markov operators, this continuous-time process is associated with Markov
semigroup

Ht = etL L= K − I;

where I is the identity operator.
In order to quantify a chain’s distance from equilibrium we need to introduce a

metric. Arguably the most natural and oft used choice is the total variation distance.



54 S. Goel / Stochastic Processes and their Applications 114 (2004) 51–79

De!nition 2.1. Let " and ! be two probability measures on the set X. The total vari-
ation distance is

‖" − !‖TV =max
A⊂X

|"(A)− !(A)|:

Next we de!ne the mixing time, a measure of how long it takes the chain to be
close (in total variation) to equilibrium.

De!nition 2.2. De!ne the mixing time # for Ht by

#= inf
{

t ¿ 0 : sup
x

‖Ht(x; ·)− !(·)‖TV6
1
e

}

:

The constant e−1 is chosen for convenience but is essentially arbitrary since for
d(t) = supx ‖Ht(x; ·)− !(·)‖TV we have d(s+ t)6 2d(s)d(t). Also note that d(t) is a
decreasing function of t. See [1] for details.

The models of random walk we examine in this paper are known to exhibit the
cuto$ phenomenon: The total variation distance of the chain from equilibrium stays
close to 1 for a long time, and then rapidly drops toward 0. Consequently, we can
compare the mixing time bounds we derive to known cuto$ times, and will show that
in many cases these agree well.

De!nition 2.3. Let F = (Xn; Kn; !n) be an in!nite family of !nite chains. Let Hn;t =
et(Kn−I) be the corresponding continuous time chain. Then F presents a cuto$ in total
variation with critical time {tn}∞

1 if tn → ∞, and for $¿ 0

lim
n→∞

max
Xn

‖Hxn; (1−$)tn − !n‖TV = 1

and

lim
n→∞

max
Xn

‖Hxn; (1+$)tn − !n‖TV = 0:

2.2. Dirichlet forms and Sobolev inequalities

Our primary tool to investigate mixing times will be the Dirichlet form, de!ned for
a !nite Markov chain (K; !) as

E(f; g) = E! [f(x) · (I − K)g(x)]:

In the case of reversible (K; !), we have the important equivalent de!nition

E(f; g) =
1
2
E!





∑

y∈X
(f(x)− f(y))(g(x)− g(y))K(x; y)



 :

When g= f, this equivalent de!nition allows us to write the Dirichlet form as a sum
of non-negative terms.
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Inequalities involving Dirichlet forms have provided useful quantitative results in
!nite Markov chain theory, including spectral gap and logarithmic Sobolev bounds.

De!nition 2.4. For (K; !) a Markov chain with Dirichlet form E, the spectral gap % is
de!ned by

%=min
{

E(f;f)
Var!(f)

; Var!(f) &= 0
}

;

where Var!(f) denotes the variation of f : E(f − Ef)2.

While in the reversible case % is the smallest non-zero eigenvalue of I−K , in general
% is the smallest non-zero eigenvalue of I − 1

2 (K + K
∗). The following lemma shows

that the spectral gap controls the mixing time; details can be found in [28].

Lemma 2.1. Let Hxt (y)=Ht(x; y) where Ht(x; y) is the kernel of the continuous time
chain Ht associated with (K; !). If % is the spectral gap for (K; !) then

‖Hxt − !‖2TV6
1
4

1
!(x)

· e−2%t :

In particular, if !∗ =minx !(x) then the mixing time satis!es

#6
1
2%

(

log
1
!∗
+ 1
)

:

Introduced in [18] to study Markov semigroups in in!nite dimensional settings, log
Sobolev inequalities also play a role in the theory of !nite Markov chains. A compre-
hensive overview of log Sobolev inequalities can be found in [19], while [12] develops
the theory for !nite chains. Below we recall some results that motivate the de!nition
of modi!ed logarithmic Sobolev constant that is the subject of this paper.

De!nition 2.5. The entropy of a non-negative function f on X with respect to ! is

Ent!(f) = E
[

f log
f
Ef

]

:

For an arbitrary function f, we will use the notation

L!(f) = Ent!(f2):

Observe that by Jensen’s inequality applied to the function &(t)= t log t, L(f)¿ 0
and L = 0 if and only if f is constant. L(f) can be seen as variation of Var(f),
and accordingly the logarithmic Sobolev constant is de!ned analogously to the spectral
gap, where the Var(f) is replaced by L(f).

De!nition 2.6. For a Markov chain (K; !) with Dirichlet form E, the logarithmic
Sobolev constant ' is de!ned by

' =min
{

E(f;f)
L!(f)

;L!(f) &= 0
}

:
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From the de!nition, it follows that ' is the largest constant c such that the logarithmic
Sobolev inequality

cL(f)6E(f;f)

holds for all functions f. It is well known that 2'6 % (see e.g. [12]).
The following results show that the log Sobolev constant bounds entropy, which

in turn bounds total variation distance. We include the proof of Lemma 2.2 since it
motivates our use of the modi!ed logarithmic Sobolev constant; proofs for Lemma 2.3
and Corollary 2.1 can be found in [12, 28].

Lemma 2.2. Let ' be the log Sobolev constant for the reversible chain (K; !). Then
for f¿ 0

Ent(Htf)6 e−4'tEnt(f):

Proof. W.l.o.g. we may assume !(f) = 1. Then !(Htf) = 1 and since H∗
t = Ht ,

d
dt
Ent(Htf) =

d
dt

∑

x

Htf(x) logHtf(x)!(x)

=
∑

x

[LHtf(x) · logHtf(x) + LHtf(x)]!(x)

=
∑

x

[LHtf(x) · logHtf(x)]!(x)

= −E(Htf; logHtf)

6−4E((Htf)1=2; (Htf)1=2)

6−4'Ent(Htf): (2.1)

Inequality (2.1) follows from the fact that for reversible chains

∀f¿ 0; E(logf;f)¿ 4E(
√

f;
√

f) (2.2)

(see e.g. [12]). Using Gronwall’s lemma, the statement is proved.

Lemma 2.3. Let ! and " = h! be two probability measures on a !nite set X. Then

‖" − !‖2TV =
1
4
‖h− 1‖2L1(!)6

1
2
Ent!(h):

Corollary 2.1. Let Hxt (y) = Ht(x; y) where Ht(x; y) is the kernel of the continuous
time semigroup Ht associated with the reversible chain (K; !). If ' is the log Sobolev
constant for (K; !) then

‖Hxt − !‖2TV6
1
2
log

1
!(x)

· e−4't :
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In particular, if !∗ =minx !(x) then the mixing time satis!es

#6
1
4'

(

log log
1
!∗
+ 2
)

:

2.3. A modi!ed logarithmic Sobolev inequality

Examining the proof of Lemma 2.2, we see that we use two key inequalities: The
!rst, (2.1), follows from (2.2), while the second results from the log Sobolev inequality

'L(f)6E(f;f):

This observation motivates the de!nition of a modi!ed log Sobolev inequality (see e.g.
[7, 24, 30]).

De!nition 2.7. For a reversible Markov chain (K; !) with Dirichlet form E, the modi-
!ed logarithmic Sobolev constant ( is de!ned by

(=min
{

E(f2; logf2)
L!(f)

;L!(f) &= 0
}

:

Modi!ed log Sobolev inequalities have recently been studied in several settings: In
[30], modi!ed log Sobolev inequalities were found for Poisson measures on N; and
[24] derives them for birth and death process on Z. For a discussion of several di$erent
discrete modi!cations of the log Sobolev inequality, see e.g. [2, 3, 5–7].
We have the following well known result relating the log Sobolev constant, the

modi!ed log Sobolev constant and the spectral gap.

Lemma 2.4. For a reversible chain (K; !) the log Sobolev constant ', the modi!ed
log Sobolev constant ( and the spectral gap % satisfy

4'6 (6 2%:

The !rst inequality follows from (2.2); for a proof of the second see [24]. From the
de!nition we see that ( is the largest constant c such that the modi!ed log Sobolev
inequality

cL(f)6E(f2; logf2)

holds for all functions f. Consequently, as in the case of the log Sobolev inequality,
( controls entropy, and in turn mixing time.

Corollary 2.2. Let Hxt (y) = Ht(x; y) where Ht(x; y) is the kernel of the continuous
time semigroup Ht associated with the reversible chain (K; !). If ( is the modi!ed
log Sobolev constant for (K; !) then

‖Hxt − !‖2TV6
1
2
log

1
!(x)

· e−(t :
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In particular, if !∗ =minx !(x) then the mixing time satis!es

#6
1
(

(

log log
1
!∗
+ 2
)

:

The modi!ed log Sobolev constant is a phenomenon of the discrete state space. Let
d"(x)=w(x)dx be a probability measure on Rn with a smooth strictly positive density
w. Then the continuous analog of the previously de!ned discrete Dirichlet form is,

E(f; g) =
∫

Rn
∇f(x) · ∇g(x)d"(x);

where ∇ is the usual gradient. In this setting, since we have a chain rule,

E(f2; logf2) = 4E(f;f):

On discrete state spaces, (2.2) shows that we have only inequality, suggesting that in
this setting ( and ' may di$er. However, given that they are indistinguishable on Rn,
it is surprising that we do in fact !nd examples where ("'.

2.3.1. Elementary properties
The modi!ed log Sobolev and log Sobolev inequalities share several properties, two

of which we state here. The !rst shows that the modi!ed log Sobolev inequality behaves
well under products, and the second shows that solutions to the modi!ed log Sobolev
inequality satisfy a certain di$erence equation. Proofs of Lemma 2.5 and Theorem 2.1
are omitted since they are analogous to the proofs for the corresponding statements for
the log Sobolev inequality given in [12, 28].

Lemma 2.5 (Product chains). Let (Ki; !i), i=1; : : : ; d, be reversible Markov chains on
!nite sets Xi with modi!ed log Sobolev constants (i. Fix " = ("i)di such that "i ¿ 0
and

∑

"i = 1. Then the product chain (K; !) on X =
∏d
i Xi with kernel

K(x; y) =
d
∑

i=1

"i)(x1; y1) : : : )(xi−1; yi−1)Ki(xi; yi))(xi+1; yi+1) : : : )(xd; yd)

(where )(x; x)=1 and )(x; y)=0 for x &= y) and stationary measure !=⊗!i satis!es

(=min
i
"i(i :

Theorem 2.1. Let (K; !) be a reversible Markov chain with modi!ed log Sobolev con-
stant ( and spectral gap %. Then either (=2% or there exists a positive, non-constant
function u which is a solution of

u2log u2 − u2log ‖u‖22 − 1
(
u2(I − K)log u2 − 1

(
(I − K)u2 = 0 (2.3)

and satis!es

(L(u) = E(u2; log u2):

In particular, if K is irreducible, then (¿ 0.
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2.3.2. First examples: The 2-point space and related spaces
The symmetric walk on the 2-point space X= {x1; x2} is perhaps the simplest of all

Markov chains. The kernel K is given by

K(x1; x2) =K(x2; x1) = 1;

K(x1; x1) =K(x2; x2) = 0

and the stationary measure ! is uniform. In [18], it is shown that the log Sobolev
inequality satis!es ' = 1. A trivial computation shows that the spectral gap % = 2.
Consequently, by Lemma 2.4, the modi!ed log Sobolev constant satis!es ( = 4. By
Lemma 2.5 and the fact that both the spectral gap and the log Sobolev constant are also
well-behaved under products (see e.g. [28]), the walk on the n-dimensional hypercube
has 4' = (= 2%= 4=n.
A generalization of the walk on the 2-point space is the complete walk on n-points,

addressed in the following lemma:

Lemma 2.6 (The complete walk). Consider the Markov chain on the n point space
X ={x1; : : : ; xn} with uniform kernel U (xi; xj)=1=(n−1) for xi &= xj and U (xi; xi)=0.
For n¿ 2, the modi!ed log Sobolev constant (n satis!es

n
n− 16 (n6

(

1 +
4

log(n+ 1)

)

n
n− 1 :

Proof. Since the chain has the uniform stationary distribution !(xi) = 1=n, we have

E(f2; logf2) =
1

2n(n− 1)

n
∑

i; j=1

[f2(xi)− f2(xj)][logf2(xi)− logf2(xj)]

=
n

n− 1 (E[f
2logf2]− Ef2 · E logf2)

=
n

n− 1

(

E
[

f2log
f2

Ef2

]

− Ef2 · E log f
2

Ef2

)

:

By Jensen’s Inequality E log ( f
2

Ef2 )6 0 and the lower bound is established. For the
upper bound, take f with f2(x1) = n+ 1 and f2(xi) = 1 for 26 xi6 n.

Diaconis and Salo$-Coste [12] prove that for the complete walk the log Sobolev
constant satis!es

' =
1− 2=n
log(n− 1)

showing that for this example, ("'.
An alternative generalization of the symmetric walk on the 2-point space is the

asymmetric walk of Corollary 2.3.
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Corollary 2.3 (Weighted 2-point space). Consider the Markov chain on the two point
space X2 = {x1; x2} with kernel K(xi; x1) = * and K(xi; x2) = 1 − * with i = 1; 2 and
0¡ *6 1

2 . Then the modi!ed log Sobolev constant satis!es 16 (6 2.

Proof. (K; !) is a reversible chain with stationary distribution !(x1)=*, !(x2)=1−*.
First we establish the lower bound, observing that it is su#cient to restrict our attention
to functions with Ef=1. Consider rational * and write *=p=q for integer p; q. Since
we can identify functions f on X2 with functions f̃ on Xq = {x1; : : : ; xq} that are
constant on the subsets {x1; : : : ; xp} and {xp+1; : : : ; xq}, Lemma 2.6 shows that

*f2(x1)logf2(x1) + (1− *)f2(x2)logf2(x2)

6 *(1− *)[f2(x1)− f2(x2)][logf2(x1)− logf2(x2)]:

The result for irrational * follows by holding f !xed and taking the limit as *n → *
for rational {*n}. The upper bound follows from the fact that the spectral gap % = 1,
and Lemma 2.4.

For the asymmetric walk, the log Sobolev constant was calculated in [12] (and also
independently in [20]) and shown to satisfy

' =
1− 2*

log[(1− *)=*]
;

again exemplifying the di$erence between ( and '. For a further discussion of the
asymmetric walk, see [7].

3. Examples of modi!ed logarithmic Sobolev inequalities

In this section we derive modi!ed log Sobolev inequalities for some models of ran-
dom walk, including the random transposition shu"e and the top-random transposition
shu"e on the symmetric group Sn, and the walk generated by 3-cycles on the alternat-
ing group An. These results are used to deduce sharp bounds on mixing times. We also
show that a generic r-regular graph has modi!ed log Sobolev constant much smaller
than its spectral gap.

3.1. Random transposition and related walks

The random transposition walk on the symmetric group Sn is a shu"e on a deck of
n cards where we uniformly at random select and swap pairs of cards. The log Sobolev
constant for this walk was determined in [23] to satisfy ' * 1

n log n , and with respect to
Corollary 2.1 is inadequate to sharply bound the mixing time [13]. Using the method of
[23], Theorem 3.1 bounds the modi!ed log Sobolev constant for walks including and
related to random transposition. In contrast to the log Sobolev constant, our estimate
of the modi!ed log Sobolev constant for random transposition is su#ciently strong to
yield the correct mixing time. After this work was completed, it came to our attention
that Gao and Quastel [17] had proven Theorem 3.1 for the case of random transposition.
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Let Gn ⊂ Sn be subgroups of the symmetric group, generated by the symmetric sets
Cn ⊂ Gn. Then we have associated random walks given by the kernel,

Kn(#; #′) =

{ 1
|Cn| #

′ = # · + for some +∈Cn;

0 otherwise:

The stationary distribution ! is uniform on Gn and the Dirichlet form for (Kn; !) is
given explicitly by

En(f; g) =
1

2|Cn|
E

[

∑

#′∈Cn

[f(#)− f(# · #′)][g(#)− g(# · #′)]

]

:

For #∈ Sn, we let #i denote the particle in position i, and so # · + denotes the con!gu-
ration after we permute the positions according to +. If this Markov chain has enough
symmetry, Theorem 3.1 gives a bound on the modi!ed log Sobolev constant (.

De!nition 3.1 (Self-similarity). A sequence of groups Gn ⊂ Sn with symmetric gener-
ating sets Cn is called self-similar if:

(1) For 16 s6 n, there exist isomorphisms gn−1s : Gn−1 → {+∈Gn|+s = s}, with
gn−1s (Cn−1) = {+∈Cn|s &∈ supp(+)}.

(2) Gn acts transitively on the set {1; : : : ; n}.
(3) There exists k, such that for all n and +∈Cn, |supp(+)| = k, where supp(+) =

{i|+i &= i}.

De!nition 3.1 encompasses a collection of random walks including random transpo-
sition on Sn and the walk generated by 3-cycles on the alternating group An. In general
consider a sequence of random walks generated by conjugacy classes of Sn. Recall, that
for n &= 4, a non-trivial conjugacy class Cn generates either the alternating group An or
Sn. For a permutation #∈ Sn, let c(#)=(c1; : : : ; cn) denote the cycle structure of #. That
is, ci is the number of cycles of length i in the disjoint cycle decomposition of #. Then,
two permutations are conjugate if and only if their cycle structure is the same. Now,
for a conjugacy class Cn0 of Sn0 (respectively An0 ) with corresponding cycle structure
cn0 = (cn01 ; : : : ; c

n0
n0 ), de!ne a sequence of conjugacy classes Cn for n¿n0 corresponding

to the cycle structures cn=(cn1; c
n0
2 ; : : : ; c

n0
n0 ; 0; : : : ; 0) where c

n
1 =n−

∑n0
i=2 ic

n0
i . Then this

sequence of walks is self-similar.
For 16 s6 n, let +s : Sn → {x1; : : : ; xn} be the random variable that takes # → #s.

The idea behind the proof of Theorem 3.1 is to !rst condition on each +s. Then we
break up L(f) into two parts: The !rst we bound by the Dirichlet form on Sn−1 where
we have !xed the sth position to hold particle +s. The second we bound by looking at
the complete walk described in Lemma 2.6 with stationary measure corresponding to
the distribution of +s (i.e. the uniform distribution on {1; : : : ; n}). By averaging over s,
we can pass from the Dirichlet forms on Sn−1 to Sn. This then gives us a recurrence
relation between the modi!ed log Sobolev constants, yielding the result.
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Theorem 3.1. Let Cn ⊂ Gn be self-similar for n¿ n0, and consider the sequence of
walks generated as above. Then, if an denotes the reciprocal of the modi!ed log
Sobolev constant for these chains,

an6 an0 + (n− n0):

Proof. To begin we !x a function f : Sn → R, with f¿ 0. By homogeneity, it is
su#cient to establish the modi!ed log Sobolev inequality for f with !(f2)=1. De!ne

fs(x) = E[f2(·)|+s = x]1=2;

fs(#|x) =
f(#))x(#s)
fs(x)

;

where )x is the dirac point mass at x. Let

I1; s = E



















f2s (+s)E











∑

#′∈Cn
supp(#′)3s

[f2s (#|+s)− f2s (# · #′|+s)]

×[logf2s (#|+s)− logf2s (# · #′|+s)]
∣

∣ +s



































= E



















f2s (+s)E











∑

#′∈Cn
supp(#′)3s

[

f2(#)
f2s (+s)

− f2(# · #′)
f2s (+s)

]

×
[

log
f2(#)
f2s (+s)

− log f
2(# · #′)
f2s (+s)

]∣

∣

∣

∣

+s



































= E











E











∑

#′∈Cn
supp(#′)3s

[f2(#)− f2(# · #′)] [logf2(#)− logf2(# · #′)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

+s





















= E











∑

#′∈Cn
supp(#′)3s

[f2(#)− f2(# · #′)] [logf2(#)− logf2(# · #′)]











:
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And de!ne

I2; s = E[f2s (+s)logf
2
s (+s)];

Ii =
1
n

n
∑

s=1

Ii; s i = 1; 2:

To express L(f) in terms of the above de!nitions note that

f2s (+s)E[f
2
s (#|+s)logf2s (#|+s)|+s] =f2s (+s)E

[

f2(#)
f2s (+s)

log
f2(#)
f2s (+s)

∣

∣

∣

∣

+s

]

= E[f2(#) logf2(#)|+s]− f2s (+s) logf2s (+s):

Taking expectations

L(f) = E{f2s (+s)E[f2s (#|+s)logf2s (#|+s)|+s]}+ I2; s: (3.1)

Since f2s (#|+s) = 0 for #s &= +s, we can naturally consider fs(·|+s) as a function on
Sn−1 (where we !x position s to hold particle +s). Speci!cally, let hs→+s ∈Gn be such
that hs→+s(s) = +s, and de!ne f̃2s on Gn−1 by

f̃2s(#) = f
2
s (hs→+sg

n−1
s (#)|+s):

Since En−1f̃2s(·) = 1,

E[f2s (#|+s)logf2s (#|+s)|+s]

=E[f̃2slog f̃
2
s]

6
an−1
2|Cn−1|

E





∑

#′∈Cn−1

[f̃2s(#)− f̃2s(# · #′)][logf̃2s(#)− log f̃2s(# · #′)]





=
an−1
2|Cn−1|

E











∑

#′∈Cn
supp(#′)3s

[f2s (#|+s)− f2s (# · #′|+s)]

×[logf2s (#|+s)− logf2s (# · #′|+s)]
∣

∣ +s











:

Applying this to (3.1) gives,

L(f)6
an−1
2|Cn−1|

I1; s + I2; s:
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Averaging over s, we have

L(f)6
an−1
2|Cn−1|

I1 + I2: (3.2)

Let k=supp(+) for +∈Cn. Then note that each term [f2(#)−f2(# · #′)][logf2(#)−
logf2(# · #′)] appears in I1 exactly n− k times. So we have

I1 =
n− k
n

E

[

∑

#′∈Cn

[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′)]

]

=
2(n− k)|Cn|

n
E(f2; logf2):

Note that

|Cn|(n− k) =
∑

+∈Cn

n
∑

i=1

1{i|i (∈supp(+)}

=
n
∑

i=1

∑

+∈Cn

1{i|i (∈supp(+)}

= n|Cn−1|:

Substituting this into (3.2), we have

L(f)6 an−1E(f2; logf2) + I2: (3.3)

To bound I2 we consider the Markov chain on state space {x1; : : : ; xn} with uniform
kernel K(xi; xj) = 1=(n− 1) for i &= j. First note that since |{#|#s = i}|= |{hs→i{#|#s =
s}|= |Gn−1| for all i, +s is uniformly distributed on {x1; : : : ; xn}. Furthermore,

E[f2· (xm)] =
1
n

n
∑

s=1

E[f2|+s = xm]

=
n
∑

s=1

E[f2; +s = xm]

= 1:

Consequently,

I2 =
1
n

n
∑

s=1

E[f2s (·)logf2s (·)]

=
1
n

n
∑

m=1

LU (f·(xm))
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6
n− 1
n2

n
∑

m=1

E(f2· (xm); logf
2
· (xm)) by Lemma 2:6

=
1
2n3

n
∑

m=1

∑

i (=j
[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]:

Now, for #′ ∈Cn such that #′
i = j

[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]

= [E[f2(#)|+i = xm]− E[f2(#)|+j = xm]]

×[logE[f2(#)|+i = xm]− logE[f2(#)|+j = xm]]

= [E[f2(# · #′)|+j = xm]− E[f2(#)|+j = xm]]

×[logE[f2(# · #′)|+j = xm]− logE[f2(#)|+j = xm]]

6E[[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′)]|+j = xm]

= nE[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′); +j = xm]:

Above we have used Jensen’s Inequality with g(x; y) = (x − y)(log x − log y) (which
is convex for x; y¿ 0). Let Ci→j ⊂ Cn consist of those #′ with #′

i = j. Then averaging
over #′ ∈Ci→j, we get

[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]

6
n

|Ci→j|
∑

#′∈Ci→j

E[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′); +j = xm]:

And

n(n− 1)|Ci→j|=
∑

i (=j

∑

+∈Cn

1{+i=j}

=
∑

+∈Cn

∑

i (=j
1{+i=j}

= |Cn|k

yields,

I26
n− 1
2nk|Cn|

n
∑

m=1

∑

i (=j

∑

#′∈Ci→j

E[f2(#)− f2(# · #′)]

×[logf2(#)− logf2(# · #′); +j = xm]

=
n− 1
2nk|Cn|

∑

i (=j

∑

#′∈Ci→j

E[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′)]
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=
n− 1
2n|Cn|

∑

#′∈Cn

E[f2(#)− f2(# · #′)][logf2(#)− logf2(# · #′)]

=
n− 1
n

E(f2; logf2):

Using (3.3), the result follows from the recurrence,

an6 an−1 +
n− 1
n
:

Corollary 3.1 (Random transposition). Consider the random transposition walk on Sn,
i.e. the walk generated by Cn = {(i; j)|16 i¡ j6 n} for n¿ 2. Then the modi!ed
log Sobolev constant ( satis!es

4
n− 1¿ (¿

1
n− 1 :

In particular, the mixing time satis!es #6 n(log log n! + 2).

Remark 3.1. In [27] it is shown that for t = n−1
2 (log(n− 1)− c)

‖Hxt − !‖TV¿ 1− 8e−2c − 4e−c − 4 log(n− 1)
n− 1 e(2log n)=n

and results in [13] show that this bound is sharp. Consequently, the mixing time bound
of Corollary 3.1 is within a factor of 2 of the critical time.

Proof. Since the walk on S2 is the symmetric walk on the 2-point space, the discussion
in Section 2.3 shows that a2 = 1

4 , yielding the lower bound. This chain is studied in
detail in [9], where it is shown that the spectral gap satis!es %=2=(n− 1). The upper
bound is then a consequence of Lemma 2.4. The mixing time follows from Corollary
2.2.

Corollary 3.2 (3-cycles): For the random walk on An generated by 3-cycles, the mod-
i!ed log Sobolev constant satis!es

6
n− 1¿ (¿

1
n− 2 :

In particular, the mixing time satis!es #6 n(log log n! + 2).

Remark 3.2. In [25, 26] it is shown that the above walk has cuto$ with critical time
tn = (n=3)log n.

Proof. The walk on A3 is the uniform walk on the 3-point space. Consequently, by
Lemma 2.6, a36 1, yielding the lower bound. The upper bound follows from results
in [25, 26] that %= 3=(n− 1), and Lemma 2.4.
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Example 3.1 (Bernoulli–Laplace): Informally, the Bernoulli–Laplace (BL) model is a
random transposition walk on Sn with n distinct sites and 16 r6 n − 1 identical
particles, with each site occupied by at most one particle. The state space Cn;r is the
set of r-subsets of {1; : : : ; n}, and accordingly is of order

( n
r

)

. For ,∈Cn;r let ,i denote
the number of particles in site i, so ,i is either 0 or 1. Let ,ij denote the con!guration
in which we have swapped the particles in positions i and j. Then the kernel for this
chain is given by

K(,; ,′) =















1
r(n−r) ,′ = ,ij ;

,i = (1− ,j) = 1:

0 otherwise;

The log Sobolev constant for this walk was found in [23] to satisfy

'n; r * n
r(n− r) log

n2

r(n− r)

and in [17] the authors used the method of Theorem 3.1 to directly show that modi!ed
log Sobolev constant for BL satis!es (n; r * n

r(n−r) . We can !nd this same bound on the
modi!ed log Sobolev constant by relying on our analysis of the random transposition
walk.
To analyze this chain, map functions f on Cn;r to functions f̃ on Sn by letting f̃(+)=

f({+1; : : : ; +r}). For ,∈Cn;r let %,∈ Sn be any permutation such that , = { %,1; : : : ; %,r}.
Note that there are r!(n− r)! such permutations and that f(,ij) = f̃( %,ij). Therefore,

E(f; g) =
1

2r(n− r)E!











∑

i; j
,i=(1−,j)=1

[f(,)− f(,ij)][g(,)− g(,ij)]











=
1

4r(n− r)
r!(n− r)!

n!

[

∑

i; j

[f(,)− f(,ij)][g(,)− g(,ij)]
]

=
1

4r(n− r)
1
n!

[

∑

i; j

[f̃(+)− f̃(+ij)][g̃(+)− g̃(+ij)]
]

=
n(n− 1)
2r(n− r)E

′(f̃; g̃);

where E′(f; g) is the Dirichlet form associated with the random transposition model
(K ′; !′) of Corollary 3.1. Furthermore, since L(f)=L′(f̃), (n; r¿ n(n−1)

2r(n−r)(
′
n. By Corol-

lary 3.1 and the fact that the spectral gap for Bernoulli–Laplace is given by %n; r= n
r(n−r)

[14], the modi!ed log Sobolev constant for the BL model satis!es

2n
r(n− r)¿ (n; r¿

n
2r(n− r) :



68 S. Goel / Stochastic Processes and their Applications 114 (2004) 51–79

By Corollary 2.2, the mixing time #n; r for the BL model satis!es

#n; r6
2r(n− r)

n

(

log log

(

n

r

)

+ 2

)

:

3.2. Top-random transposition walk

A walk similar to those considered in Section 3.1 is the complete (k; l)-bipartite
shu"e. We can visualize this walk on a deck of cards by !rst splitting the deck into
two pieces—of size k and of size l—and then uniformly swapping pairs of cards
between the piles. In the case k = 1, we have the top-random transposition shu"e.
That is, at each step we swap the top card and another chosen uniformly at random.
Using the same notation as above, for #∈ Sn, we let #i denote the particle in position

i, and let #ij denote the con!guration after we swap the particles in positions i and j.
The kernel for the (k; l)-complete bipartite shu"e is given by,

K(#; #′) =

{ 1
kl #

′ = #ij for any 16 i6 k ¡ j6 k + l;

0 otherwise:

The stationary distribution ! is uniform and the Dirichlet form for (K; !) is given
explicitly by

E(f; g) =
1
2kl
E





∑

16i6k¡j6k+l

[f(#)− f(#ij)][g(#)− g(#ij)]



 :

As above, before computing the modi!ed log Sobolev constant for the walk on Sn,
we restrict our attention to the movement of one particle. In this case we have the
walk on the complete (k; l)-bipartite graph: Our state space is the k + l point space
{x1; : : : ; xk ; y1; : : : yl}; the kernel is given by

K̃(xi; yj) =
1

k + l
; 16 i6 k; 16 j6 l;

K̃(yj; xi) =
1

k + l
; 16 i6 k; 16 j6 l;

K̃(xi; xi) =
k

l+ k
; 16 i6 k;

K̃(yj; yj) =
l

l+ k
; 16 j6 l

and zero otherwise. Then (K̃ ; !) is reversible with respect to the uniform stationary
measure !.

Lemma 3.1. For the random walk on the complete (k; l)-bipartite graph with l¿ 2,
the modi!ed log Sobolev constant satis!es (6 2k=(k+ l). In the case of the star, i.e.
the complete (1; l)-bipartite graph, we have the lower bound (¿ 1=(l+ 1).
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Proof. By explicitly computing the eigenvalues of K̃ we !nd the spectral gap % =
k=(k + l). The upper bound for ( then follows from Lemma 2.4.
To lower bound ( for the star observe that

E(f2; logf2) =
1

(l+ 1)2

[

∑

i

[f2(x1)− f2(yi)][logf2(x1)− logf2(yi)]
]

=
1

l+ 1
E[[f2(x1)− f2(·)][logf2(x1)− logf2(·)]]:

By homogeneity, we only need to show the modi!ed log Sobolev inequality for func-
tions f with f2(x1) = 1. And in this case, the above simpli!es to

E(f2; logf2) =
1

l+ 1
[−E logf2 + Ef2logf2]:

By Jensen’s Inequality,

E logf26 logEf26Ef2 · logEf2:

Since L(f) = Ef2logf2 − Ef2 · logEf2,

L(f)6Ef2logf2 − E logf2

and the lower bound is established.

The proof of the following theorem is analogous to the proof of Theorem 3.1, the
primary di$erence being that here we bound I2 using the Markov chain on the star
described in Lemma 3.1.

Theorem 3.2. For l¿ 2, let ak;l denote the reciprocal of the modi!ed log Sobolev
constant for the complete (k; l)-bipartite walk on Sk+l, and let ãk; l denote the recip-
rocal of the modi!ed log Sobolev constant for the complete (k; l)-bipartite walk on
{x1; : : : ; xk ; y1; : : : ; yl}. Then

ak;l6 ak;l−1 +
2k
k + l

ãk; l:

Proof. For 16 s6 k + l, let +s : Sn → {x1; : : : ; xn} be the random variable that takes
# → #s. To begin we !x a function f : Sn → R, with f¿ 0. By homogeneity, it is
su#cient to establish the modi!ed log Sobolev inequality for f with !(f2) = 1. Let

fs(x) = E[f2(·)|+s = x]1=2;

fs(#|x) =
f(#))x(#s)
fs(x)

:
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And for k ¡ s6 k + l, de!ne

I1; s = E



















f2s (+s)E











∑

16i6k¡j6k+l
j (=s

[f2s (#|+s)− f2s (#ij|+s)]

×[logf2s (#|+s)− logf2s (#ij|+s)
]∣

∣ +s



































= E









∑

16i6k¡j6k+l
j (=s

[f2(#)− f2(#ij)] [logf2(#)− logf2(#ij)]









I2; s = E[f2s (+s) logf
2
s (+s)]

Ii =
1
l

k+l
∑

s=k+1

Ii; s; i = 1; 2:

As before,

L(f) = E{f2s (+s)E[f2s (#|+s)logf2s (#|+s)|+s]}+ I2; s
and, considering fs(·|+s) as a function on Sn−1,

Lk; l−1(fs(·|+s))6 ak;l−1Ek; l−1(f2s (·|+s); logf2s (·|+s)):

Consequently,

E[f2s (#|+s)logf2s (#|+s)|+s]

6
ak;l−1

2k(l− 1)E











∑

16i6k¡j6k+l
j (=s

(f2s (#|+s)− f2s (#ij|+s))

×(logf2s (#|+s)− logf2s (#ij|+s))
∣

∣ +s











and

L(f)6
ak;l−1

2k(l− 1) I1; s + I2; s:
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Averaging over s, we have

L(f)6
ak;l−1

2k(l− 1) I1 + I2: (3.4)

Since each term [f2(#)−f2(#ij)][logf2(#)− logf2(#ij)] appears in I1 exactly l− 1
times, we have

I1 =
l− 1
l
E





∑

16i6k¡j6k+l

[f2(#)− f2(#ij)][logf2(#)− logf2(#ij)]





= 2k(l− 1)E(f2; logf2):

Substituting this into (3.4), we have

L(f)6 ak;l−1E(f2; logf2) + I2: (3.5)

To bound I2 we consider the Markov chain on the state spaces {x1; : : : ; xk+l} with
kernel given by the complete (k; l)-bipartite graph. Since +s is uniformly distributed
on {1; : : : ; k + l},

I2 =
1
l

k+l
∑

s=k+1

E[f2s (·)logf2s (·)]

6
1
l

k+l
∑

s=1

E[f2s (·)logf2s (·)] since entropy is non-negative

=
1
l

k+l
∑

m=1

LU (f·(xm))

6
ãk; l
l

k+l
∑

m=1

E(f2· (xm); logf
2
· (xm))

=
ãk; l

l(k + l)2

k+l
∑

m=1

∑

16i6k¡j6k+l

[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]:

Since

[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]

6 (k + l)E[f2(#)− f2(#ij)][logf2(#)− logf2(#ij); +j = xm];
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we have

I26
ãk; l

l(k + l)

∑

16i6k¡j6k+l

[f2i (xm)− f2j (xm)][logf2i (xm)− logf2j (xm)]

=
2k
k + l

ãk; lE(f2; logf2)

and the corresponding recurrence

ak;l6 ak;l−1 +
2k
k + l

ãk; l:

Corollary 3.3 (Top-random transposition). For the top-random transposition walk on
Sn, i.e. the complete (1; n− 1)-bipartite walk, the modi!ed log Sobolev constant sat-
is!es

2
n− 1¿ (¿

1
2(n− 1) :

In particular, the mixing time satis!es #6 2(n− 1)[log log n! + 2].

Remark 3.3. Diaconis [10] outlines a proof that the top-random transposition walk
exhibits cuto$ at critical time tn = n log n.

Proof. By Lemma 3.1, ã1; l6 l + 1 and the recurrence reduces to a1; l6 a1; l−1 + 2.
Since the top-random transposition walk on S2 is the symmetric walk on the 2-point
space, a1;1 = 1

4 , yielding the lower bound. The upper bound follows from Lemma 2.4
and the fact that %= 1=(n− 1) [16].

3.3. Random regular graphs

In the examples that we have examined thus, the modi!ed log Sobolev constant (
is of approximately the same magnitude as the spectral gap %. This is not however
always the case.
For !xed r ¿ 3, [8] introduced a model for random r-regular graphs on n vertices.

For this model, [2] shows that as n tends to in!nity, a random r-regular graph G has
spectral gap %(G)¿ $(r)¿ 0 with probability 1−o(1). Using this example, [12] shows
that a generic r-regular graph has log Sobolev constant '#%. The following lemma
shows that for this family of random graphs we also have (#%.

Lemma 3.2. Let G = (X; E) be a connected r-regular graph with |X|¿ 8r and let
(K; !) be the canonical walk on G with uniform stationary distribution !. Then the
modi!ed log Sobolev constant satis!es

(6 4 log r
2 + log log|X|
log[|X|=8] :
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In particular, for !xed r

(
|X|→∞→ 0:

Proof. For x; y∈X, let d(x; y) be the natural graph distance. Let Anx = {y∈X |d(x; y)
¿n}. Then Knx (Anx) = 0, and

!(Anx)¿ 1− 1 + r + r2 + · · ·+ rn

|X|

¿ 1− 2rn

|X|

since by assumption we must have r ¿ 1. Let Po(%) denote a Poisson random variable
with mean %. Then,

Hxt (A
n
x)6Prob(Po(t)¿ n)6

t + t2

n2
:

Furthermore for n0 = log(|X|=8)=log r and t0 =n0=4, !(An0x )¿ 3
4 and H

x
t0 (A

n0
x )6

1
4 +

1
16 .

Since

‖Ht0x − !‖TV =max
A⊂X

|Ht0x (A)− !(A)|¿ 7
16

the mixing time satis!es #¿t0. But from Lemma 2.2

#6
1
(
(log log |X|+ 2)

and the result follows.

4. Comparison techniques

A perturbed chain often has log Sobolev and modi!ed log Sobolev constants similar
to the original. Lemma 4.1 illustrates this phenomenon; the proof is similar to the log
Sobolev case presented in [12] and is omitted here.

Lemma 4.1. Let (K; !) and (K ′; !′) be two !nite, reversible Markov chains de!ned
on X and X′, respectively, with modi!ed log Sobolev constants ( and (′. Assume
there exists a map

l2(X; !) → l2(X′; !′) : f → f̃

and constants A; B; a¿ 0 such that for all f∈ l2(X; !)

E′(f̃2; log f̃2)6AE(f2; logf2) and aL!(f)6L!′(f̃) + BE(f2; logf2);

then
a(′

A+ B(′ 6 (:
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In the case X =X′;E′(f2; logf2)6AE(f2; logf2) and a !6 !′, we have

a(′

A
6 (:

Salo$-Coste [28] shows that for any two !nite irreducible Markov chains K ′ and
K on the same state space, there exists a constant A such that for all functions f,
E′(f;f)6AE(f;f). Consequently, the analog of Lemma 4.1 proven in [12] shows
that we can always use the log Sobolev constant of one chain to estimate the constant
for any other chain on the same space—although in practice this estimate may be quite
bad.
There does not in general, however, exist a constant A such that for all f, E′(f2;

logf2)6AE(f2; logf2). Given the numerous similarities between the log Sobolev and
modi!ed log Sobolev constant, this fact is quite surprising. Consider the three-point
space X={x1; x2; x3}. Let K ′ be the complete graph on X, and let K be the line graph
with holding probability 1

2 at the endpoints. Then both chains have uniform stationary
distribution. Let

-xixj (f) = [f
2(xi)− f2(xj)][logf2(xi)− logf2(xj)]:

Then

E′(f2; logf2)
E(f2; logf2)

= 1 +
-x1x3

-x1x2 + -x2x3
:

Fix A¿ 1 and for b¿A let f2(x1) = 1, f2(x2) = b=A, and f2(x3) = b. Then

-x1x3
-x1x2 + -x2x3

=
(b− 1)log b

( ba − 1)log ba +
A−1
A b logA

¿
(b− 1)log b

b
a log b+ b logA

b→∞→ A:

So for every A, there exists an f with E′(f2; logf2)¿AE(f2; logf2). While this
shows that we cannot always compare chains, several interesting examples are amenable
to comparison.

Example 4.1 (The Heavy Ace): Recall our informal description of the top-random
transposition walk on the permutation group Sn: Uniformly at random pick a posi-
tion i from 2 to n, and then swap the top card and the card in position i. More
formally, this is the group walk on Sn with generating set {(1; i)|26 i6 n}. Consider
the following variant of this walk: Uniformly at random pick a position i from 2 to
n; if either the top card or the card in position i is the ‘Ace of Spades’ do nothing
with probability 1

2 and swap the cards with probability
1
2 ; otherwise, swap the cards

as usual. Like the top-random transposition walk, this modi!ed walk is reversible with
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respect to the uniform stationary distribution. However, unlike the former walk, the
latter cannot be realized as a walk on a group. While intuitively this small perturbation
should not dramatically a$ect mixing time, the comparison techniques of [11] to obtain
precise results crucially rely on group structure.
The kernel of the Heavy Ace walk is given explicitly by

#1 &= 1 K(#; #′) =































1
(n−1) ; #′ = #1i ; 1¡i6 n; #i &= 1;
1

2(n−1) ; #′ = #1i ; 1¡i6 n; #i = 1;

1
2(n−1) ; #′ = #; #1 = 1;

0; otherwise;

#1 = 1 K(#; #′) =















1
2(n−1) ; #′ = #1i ; 1¡i6 n;

1
2 ; #′ = #; #1 = 1;

0; otherwise:

Letting E′ be the Dirichlet form of the top-random transposition walk, we see that
E′(f2; logf2)6 2E(f2; logf2). By Lemma 4.1, (¿ (′=2. By Corollary 3.3, (¿ 1=4(n−
1), and consequently by Corollary 2.2 the mixing time for the Heavy Ace walk satis!es

#6 4(n− 1)[log log n! + 2]:

Using the method detailed in [9], we can !nd a corresponding lower bound. For
simplicity we will examine the discrete time chain Kn (the argument for Ht is anal-
ogous). Let A be the subset of permutations with at least one !xed point. That is
A = {+∈ Sn | +i = i for some 16 i6 n}. Under the uniform measure !, this is the
matching problem, and arguments in [15] show that

!(A) = 1− 1
e
+ O
(

1
n!

)

:

Let {(1; X1); (1; X2); : : : ; (1; Xk)} denote the transpositions that we considered making
up to step k. That is, at step i, 16 i6 k, we choose cards 1 and Xi, checked if either
was an ‘Ace of Spades’, and continued accordingly. Then to bound Kk(A), observe
that Kk(A)¿Kk(B) where B=

{(
⋃

16i6k Xi
)

&= {2; : : : ; n}
}

, i.e. B is the event that by
step k we had not even chosen all of the positions. Arguments in [15] show that

Kk(B) = 1− e−ne
−k=n

+ o(1) uniformly in k as n → ∞:

For k = n log n+ cn, Kk(A)¿ 1− e−e−c
+ o(1), and consequently

‖Kk − !‖TV¿ |Kk(A)− !(A)|

¿
1
e

− e−e
−c
+ o(1):
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5. Concentration of measure

In this section we present the well known connection between log Sobolev and
concentration inequalities (see e.g. [7, 21, 22], and present some examples based on the
inequalities derived in Section 3.
First we review the key de!nitions and results. Let (X; d; ") denote a metric space

(X; d) equipped with a probability measure " on its Borel sets.

De!nition 5.1. The concentration function on (X; d; ") is given by

((X;d;")(r) = sup
{

1− "(Ar) : A ⊂ X; "(A)¿
1
2

}

r ¿ 0;

where Ar = {x∈X : d(x; A)¡r} is the open r-neighborhood of A with respect to the
metric d.

In Theorem 5.1 we show that modi!ed log Sobolev inequalities imply deviation
inequalities for Lipschitz functions. Lemma 5.1 shows that these deviation bounds in
turn yield concentration inequalities; for a proof of Lemma 5.1, see [22].

De!nition 5.2. A real-valued function F on (X; d) is said to be Lipschitz if

‖F‖Lip = sup
x (=y

|F(x)− F(y)|
d(x; y)

¡∞:

We say that F is 1-Lipschitz if ‖F‖Lip6 1.

Lemma 5.1. Let " be a Borel probability measure on a metric space (X; d). Assume
that for some non-negative, decreasing function ( on R+ and any bounded 1-Lipschitz
function F on (X; d)

"({F¿EF + r})6 ((r)

for r ¿ 0. Then

1− "(Ar)6 (("(A)r)

for every Borel set A with "(A)¿ 0 and every r ¿ 0. In particular

((X;d;")(r)6 (
( r
2

)

:

For a reversible Markov chain (K; !) on state space X, consider the graph G =
(X; E) with symmetric edge set E = {(x; y) | !(x)K(x; y)¿ 0}. Then using the natural
graph distance d, we can de!ne the metric probability space (X; d; !). Theorem 5.1
follows the Herbst argument to relate the modi!ed log Sobolev constant to a deviation
inequality on this graph. For a discussion of this method and more examples, see [22].
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Theorem 5.1. Let ( denote the modi!ed log Sobolev constant for the reversible
Markov chain (K; !) on X. For any 1-Lipschitz function F on (X; d), and r ¿ 0

"({F¿EF + r})6 e−(r2=2:

Proof. Since by de!nition

L(f)6
1
2(
E

[

∑

y

[f2(x)− f2(y)] · [logf2(x)− logf2(y)]K(x; y)
]

; (5.1)

letting f2 = e%F−%2=2( in (5.1), we get

E
[(

%F − 1
2(

%2
)

e%F−(1=2()%2
]

− .(%)log.(%)6
1
2(

%2.(%);

where .(%) = Ef2. So,

%.′(%)6.(%) log.(%):

Now let H (%) = log.(%)
% , with H (0) = .′(0)

.(0) = EF . Then

H ′(%) = − log.(%)
%2

+
.′(%)
%.(%)

6 0:

Consequently, H (%)6H (0). That is,

.(%)6 e%EF

and so

Ee%F6 e%EF+%
2=2(:

Finally, for r ¿ 0

"({F¿EF + r}) = "({e%F¿ e%(EF+r)})

6 e−%(EF+r)Ee%F

6 e%
2=2(−%r :

Taking %= r( yields the result.

Using the modi!ed log Sobolev inequalities derived in Section 3, we can obtain
corresponding concentration inequalities. Here we consider two examples: random-
transposition and the top-random transposition shu"e.
Consider the metric probability space on the symmetric group Sn given by the random

transposition metric and the uniform probability distribution !. Since by Corollary 3.1
the modi!ed log Sobolev constant for the associated walk satis!es (¿ 1=(n − 1).
Theorem 5.1 shows that for any 1-Lipschitz function on Sn, and r ¿ 0

!({F¿EF + r})6 e−r
2=2(n−1):
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Accordingly the concentration function satis!es

((r)6 e−r
2=8(n−1):

This random transposition graph was also studied in [4] via the subgaussian constant,
which implies a concentration inequality. In particular, the authors show that

((r)6 e−(2r−
√
n−1)2=2(n−1):

As a second example, consider the graph associated with the top-random transposition
shu"e and let d̃ be the associated metric on Sn. Then, since (x; y) = (1; x)(1; y)(1; x),
d̃(+1; +2)6 3d(+1; +2). Consequently,

(d̃(r)6 (d
( r
3

)

6 e−r
2=72(n−1):

However, since Corollary 3.3 shows that for this chain (¿ 1=2(n − 1), for any 1-
Lipschitz function F on (Sn; d̃) and r ¿ 0

!({F¿EF + r})6 e−r
2=4(n−1):

Accordingly, we have the slightly tighter bound

(d̃(r)6 e−r
2=16(n−1):
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