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In domains ranging from computer vision to natural language processing, machine learning models have been shown to exhibit stark

disparities, often performing worse for members of traditionally underserved groups. One factor contributing to these performance gaps

is a lack of representation in the data the models are trained on. It is often unclear, however, how to operationalize representativeness

in specific applications. Here we formalize the problem of creating equitable training datasets, and propose a statistical framework for

addressing this problem. We consider a setting where a model builder must decide how to allocate a fixed data collection budget to

gather training data from different subgroups. We then frame dataset creation as a constrained optimization problem, in which one

maximizes a function of group-specific performance metrics based on (estimated) group-specific learning rates and costs per sample.

This flexible approach incorporates preferences of model-builders and other stakeholders, as well as the statistical properties of the

learning task. When data collection decisions are made sequentially, we show that under certain conditions this optimization problem

can be efficiently solved even without prior knowledge of the learning rates. To illustrate our approach, we conduct a simulation study

of polygenic risk scores on synthetic genomic data—an application domain that often suffers from non-representative data collection.

We find that our adaptive sampling strategy outperforms several common data collection heuristics, including equal and proportional

sampling, demonstrating the value of strategic dataset design for building equitable models.

CCS Concepts: • Computing methodologies→Machine learning; Artificial intelligence; • Theory of computation→ Design

and analysis of algorithms.

Additional Key Words and Phrases: Active learning, artificial intelligence, computer vision, fairness, machine learning, polygenic risk

scores, representative data

1 INTRODUCTION

Consider the problem of building a computer vision model to detect deforestation from satellite imagery [30, 34, 42].

Such models may be useful to assess ecological damage, and to guide the investment of resources by government

agencies, legal organizations, and environmental groups. Machine learning models like this—as well as related models

in natural language processing, healthcare, criminal justice, and beyond—have been shown to exhibit sharp disparities,

often performing worse on subgroups of the population defined by race, ethnicity, gender, language, and nationality [9,

11, 15, 18, 20, 22, 29, 39, 40, 50, 55]. Our deforestation model might, for instance, perform worse in certain regions of

the world, perhaps given differences in the visual appearance of the tree canopy. A variety of techniques in the fair

machine learning community attempt to mitigate such shortcomings [8, 14, 19–21, 24, 26, 35, 36, 39, 41, 46, 54, 58–60].

For example, one might constrain the computer vision model to have equal error rates across countries [30, 34, 42].

Popular approaches to algorithmic fairness—such as demanding error rate parity—often implicitly assume a fixed
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training dataset, with disparities addressed by altering the statistical model. In many cases, however, it is also possible

to update the training datasets themselves (e.g., one might seek out or label additional satellite images from certain

countries), and so it is important to design approaches to algorithmic fairness that consider this possibility.

There have been numerous calls to make datasets more diverse [2, 3, 28, 47, 53], including by policymakers, but, in

practice, it is often unclear how exactly one should compile datasets in specific domains to ensure the models that are

trained on them are broadly equitable. For instance, following the heuristic of “equal sampling,” one might label an

equal number of images per country; alternatively, following the heuristic of “representative sampling,” one might label

images in proportion to the geographic area of each country. While both strategies aim for diversity in the dataset,

they can lead to quite different outcomes and downstream models. Furthermore, neither of these sampling strategies

directly considers either the costs of data collection or the impact of datapoints on model performance. For example,

if the costs of data collection vary across countries, then, given a fixed budget, different sampling strategies can lead

to different total dataset sizes, impacting overall model performance. There may similarly be variance in how much

datapoints from one country impact model performance in other regions (e.g., due to similarity in vegetation). Relatedly,

it may be important to prioritize performance in certain regions (e.g., to maximize impact given local intended uses

and expected impacts of the model, regulatory constraints, or because those areas have been historically neglected),

creating additional considerations for dataset construction.

Here we develop a framework for constructing broadly equitable datasets and for evaluating the equity of existing

datasets. We start, in Section 3, by formalizing the dataset construction problem in a way that accounts for both the

costs and consequences of data collection strategies. Our approach separates the task into two key components. First,

we introduce the notion of group-specific “learning curves” that describe how the allocation of training data affects the

resulting group-level model performance. For instance, in our computer vision application, the model performance

might be high in one country even with relatively small amounts of labeled data in that country, whereas in another

country more samples from that country might be required to achieve a comparably high model performance. Second,

we incorporate the model-builder’s preferences over the resulting group-level model performances into a utility function.

For example, a model-builder might specify how to prioritize performance across regions. Given these two ingredients,

dataset construction can then be framed as maximizing utility subject to the budgetary constraints.

When the learning curves are fully known and concave, and the utility is linear, this formalization results in a convex

optimization problem which can be efficiently solved via standard approaches. But in most cases, the model-builder does

not have a priori knowledge of the learning curves, creating additional challenges for efficiently constructing datasets

that are appropriate to the task. In Section 4, we consider a setting in which datasets are constructed sequentially—a

setting that is common when datapoints are labeled online, with a remote workforce. In this case, we present an adaptive

sampling algorithm that can, under certain conditions, efficiently find a utility-maximizing allocation even in the

absence of knowledge of the learning curves. Both analytically and empirically, we show that our adaptive algorithm

gives near-optimal performance in a variety of scenarios, outperforming common alternatives.

Finally, in Section 5 we evaluate our approach using a popular dataset simulator used to train polygenic risk

score (PRS) models, which seek to identify high-risk individuals for targeted health interventions via genomic data.

We construct a hypothetical disease and health intervention, and evaluate how changing the allocation of training

data between more or fewer people of European and African descent affects the quality of risk stratification for the

intervention in both populations. We find that our adaptive approach to sampling allows for model-builders to construct

models which maximize the total impact of the recommended health intervention while allowing them the flexibility to

efficiently increase impact in groups traditionally excluded by PRSs.
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2 RELATEDWORK

Given a fixed dataset, the problem of training fair models has received considerable attention from the machine learning

community [8, 14, 19–21, 24, 26, 35, 36, 39, 41, 46, 54, 58–60], where many of the popular approaches fall into one

of two broad categories: equalizing error rates between groups or minimizing the impact of sensitive attributes on

downstream predictions. There is a substantially smaller literature on the equitable construction of datasets, in which a

model-builder can choose how to allocate a fixed budget to acquire training samples from different groups to mitigate

inequities. Below we briefly describe some of the most related research in this line of work.

Branchaud-Charron et al. [10] consider how BALD—a heuristic algorithm for active learning which searches for

the most informative datapoint overall to sample next without knowledge of group membership—improved accuracy

of minority group model performance and predictive parity compared to uniform sampling. However, this heuristic

does not take into account tradeoffs in group-level model performances when sampling, so it is ill-suited to solve our

allocation problem; we note, though, that adding an active learning subroutine to our sampling approach could be a

promising direction for future work.

Anahideh et al. [4] and Sharaf and Daumé III [56] both propose group-aware active learning techniques to the

problem of allocating a fixed budget to sample a dataset from different groups. In both methodologies, the model-builder

identifies a fairness metric and uses an active learning framework to select samples which both improve the overall

model performance along with the fairness metric. Our approach differs from these fundamentally in that we specify the

model-builder’s utility directly in terms of group-level model performances, centering the consequences of performance

disparities [17, 48]. We show that our specification has numerous upsides, making it straightforward to: (1) implement

interventions to make models more inclusive to traditionally underserved groups, beyond satisfying a fairness metric;

(2) adaptively sample under a wider range of learning curves; and (3) audit a dataset for inclusivity. Finally, Abernethy

et al. [1] propose a max-min fairness theory for active sampling by sampling from the group that currently has the

worst model performance at each step. We evaluate this strategy in our work and characterize how it compares to other

strategies for constructing equitable datasets; in particular, we show that it can lead to sub-optimal results, as it does

not consider the rate at which datapoints improve performance.

In addition to the algorithmic approaches described above, there have been many real-world efforts to compile

more inclusive datasets in several different domains [27, 31, 44, 51]. These efforts often employ a variety of natural

heuristics—for example, ensuring a minimum level of representation across groups. Such heuristics are often useful

when downstream applications are varied or less well specified, but, as we show, they can be sub-optimal for specific,

well-defined modeling tasks. Finally, given an existing dataset, many proposals have suggested ways to characterize

their equity and aid appropriate use, for example by including statements describing what populations the datasets are

and are not representative of [7, 28, 32, 33].

3 PROBLEM SETUP

3.1 A model of sampling

We consider a scenario where a model builder has a fixed budget 𝐵 which they can use to obtain training data associated

with 𝐾 different groups.
1
Let 𝑐𝑘 denote the cost for obtaining a single sample from group 𝑘 . Returning to our running

example, a researcher training a computer vision model to detect deforestation must decide how to allocate their budget

to obtain labeled satellite images from 𝐾 different countries, with country-specific costs of data collection 𝑐𝑘 .

1
The “budget” can include both monetary and other costs, such as time or effort.
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To formalize the model-builder’s allocation problem, we next introduce the idea of group-specific “learning curves”,

which capture the expected performance gains under different sampling strategies. Let ®𝑛 = (𝑛1, ..., 𝑛𝐾 ) describe the
number of samples collected from each group under a given strategy, where 𝑛𝑘 ∈ R+. Note that we allow fractional

sample sizes—not just integer sizes—which we interpret as a probabilistic strategy. Specifically, if 𝑛𝑘 = 𝑢 + 𝑣 for an
integer 𝑢 and 0 < 𝑣 < 1, then after collecting the first 𝑢 datapoints, an additional datapoint is collected with probability

𝑣 . To satisfy the budget constraint (in expectation), we require that

∑𝐾
𝑘=1

𝑐𝑘𝑛𝑘 ≤ 𝐵.
Now let

𝑇®𝑛 =

{
(𝑋 1, 𝑌 1), (𝑋 2, 𝑌 2), ...(𝑋𝑁 , 𝑌𝑁 )

}
(1)

denote a random training dataset with features 𝑋 and labels 𝑌 satisfying the given allocation ®𝑛. In particular, if 𝑋 𝑖𝑔

denotes the group membership of the 𝑖-th datapoint, then, for 1 ≤ 𝑘 ≤ 𝐾 , E[|{𝑖 : 𝑋 𝑖𝑔 = 𝑘}|] = 𝑛𝑘 .
We further assume that within each group, the samples (𝑋,𝑌 ) are i.i.d draws from a fixed, group-specific data-

generating distribution.

Suppose that
ˆ𝑓𝑇®𝑛 is a model fit to the training data 𝑇®𝑛 , with ˆ𝑓𝑇®𝑛 (𝑋

0) denoting the model prediction on a datapoint

𝑋 0
. Then, the group-level model performance given the training dataset 𝑇®𝑛 is

PERF𝑘,𝑇®𝑛 = E𝑋 0,𝑌 0 [𝐺 (𝑌 0, ˆ𝑓𝑇®𝑛 (𝑋
0) | 𝑋 0

𝑔 = 𝑘], (2)

where 𝐺 is defined by the model-builder to be a measure of model performance given prediction
ˆ𝑓𝑇®𝑛 (𝑋

0) and true

outcome 𝑌 0
. The group-level performance is thus the expected model performance, as defined by 𝐺 , of the model for a

new point (𝑋 0, 𝑌 0) drawn from the joint distribution of the data conditioned on membership in group 𝑘 .

For example, in our setting we might define𝐺 = 𝑎𝑌 0 ˆ𝑓𝑇®𝑛 (𝑋
0) −𝑏 (1−𝑌 0) ˆ𝑓𝑇®𝑛 (𝑋

0) for some positive constants 𝑎 and 𝑏

which balance the benefit of detecting a true instance of deforestation versus the cost of a false positive, respectively.

Finally, the expected group-level model performance given a training allocation ®𝑛 is

𝑀𝑘 (®𝑛) = E𝑇®𝑛E𝑋 0,𝑌 0 [𝐺 (𝑌 0, ˆ𝑓𝑇®𝑛 (𝑋
0)) | 𝑋 0

𝑔 = 𝑘], (3)

where the outer expectation is taken over random datasets satisfying the specified group-level sample sizes. We call

this function𝑀𝑘 the group-level learning curve, the function which maps a training allocation to the expected model

performance, and let ®𝑀 (®𝑛) = (𝑀1 (®𝑛), ..., 𝑀𝐾 (®𝑛)) denote the vector of group-level performances for each group.

For a given learning curve, we now define a model-builder’s utility over different allocations. This utility can be

written as 𝑈 ( ®𝑀) = 𝑈 (𝑀1 (®𝑛), ..., 𝑀𝐾 (®𝑛)), where 𝑈 ( ®𝑀) can be thought of as the model-builder’s preference over model

performances for different groups. In some settings, the model-builder may wish to prioritize model performance in

one particular group: for instance, in our deforestation example, a researcher may wish to prioritize performance in a

country with a stronger regulatory environment which can better translate model performance to impact, or a country

which has been traditionally understudied by other deforestation analyses. To capture such preferences, we primarily

consider utility functions that are a linear combination of the model performances of each group, of the form

𝑈 ( ®𝑀) =
𝐾∑︁
𝑘=1

𝑎𝑘𝑀𝑘 , (4)

where 𝑎𝑘 ≥ 0. In particular, this specification allows the model builder the flexibility to intervene to make models more

inclusive, by setting 𝑎𝑘 higher for groups which, for example, have been traditionally excluded. We note that these

groups need not have lower model performance in order to be prioritized, distinguishing our approach from those

aiming for performance parity.
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Finally, given the above ingredients, the model-builder’s optimization problem is to choose an allocation ®𝑛∗ which
maximizes utility subject to the budget constraint:

®𝑛∗ ∈ argmax

®𝑛
𝑈 (𝑀1 (®𝑛), ..., 𝑀𝐾 (®𝑛))

subject to:

𝐾∑︁
𝑘=1

𝑐𝑘𝑛𝑘 ≤ 𝐵.
(5)

If the learning curves 𝑀𝑘 are known and concave, and the utility function is linear—as in Eq. (4)—then 𝑈 ( ®𝑀 (®𝑛)) is
itself a concave function of ®𝑛. More generally, if𝑈 is concave and non-decreasing in every element of ®𝑀 , then, since a

concave non-decreasing function of concave functions is itself concave, 𝑈 ( ®𝑀 (®𝑛)) is concave. In these cases, an optimal

allocation ®𝑛∗ can be efficiently computed using off-the-shelf tools for convex optimization. In Section 4, we develop an

alternative approach to finding optimal allocations that does not require full knowledge of the learning curves.

In addition to formalizing the problem of dataset construction, this framework provides an approach for auditing

existing datasets. Specifically, for an auditor who might have their own preference �̃� (𝑀1 (®𝑛), ..., 𝑀𝑘 (®𝑛)), they can

estimate the gap

max

®𝑛
�̃� (®𝑛) − �̃�

(
®𝑛∗
model-builder

)
, (6)

where the maximum is taken over feasible allocations. A large gap suggests that the model-builder’s implied preferences

over group-level model performances, based on their allocation, differs from that of the auditor’s.

3.2 Alternative specifications of the utility function

In the linear specification of utility introduced above, the model builder’s preferences for a single group do not depend on

how well the model performs for other groups. Alternative specifications might allow for a direct penalty to inequality:

for example, we could specify

𝑈 ( ®𝑀) =
𝐾∑︁
𝑘=1

𝑎𝑘𝑀𝑘 − 𝑏 |𝑀𝑘 −𝑀 |, (7)

where𝑀 denotes the average performance across all groups, and the penalization term |𝑀𝑘 −𝑀 | signals that the model

builder prefers a solution where the model performances across groups are similar. For example, if an allocation results

in the same model performance for all groups, such that𝑀𝑘 = 𝑀 for all 𝑘 , then the penalization term is 0.

In some cases, explicitly encoding preferences for parity can be appropriate to the application. In other instances,

though, doing so can lead to unintended consequences. For example, consider two possible allocations ®𝑛1 and ®𝑛2 over
three groups such that ®𝑀 (®𝑛1) = (1, 1, 1) and ®𝑀 (®𝑛2) = (2, 3, 4). The latter allocation has strictly better performance for

each group. However, if 𝑏 is sufficiently large in the utility in Eq. (7), then𝑈 ( ®𝑀 (®𝑛1)) > 𝑈 ( ®𝑀 (®𝑛2)), since the penalization
term is zero in the first allocation and positive in the second. In other words, in this example, a preference for parity in

performance can lead to worse performance for all groups.

Despite some of the challenges with encoding parity as above, one might still seek to prioritize groups with lower

performance to reduce inequitable model performance across groups. One option for doing so is to apply a concave

transformation to the model performance terms. For example, if 𝑈 ( ®𝑀) = ∑𝐾
𝑘=1

log(𝑀𝑘 ), the marginal increase in

utility is greatest for groups with the lowest model performances, encouraging parity. Yet, nonetheless, a Pareto

improvement—in which all groups achieve higher performance—still results in higher utility.
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Sampling Strategy 𝑀1 𝑀2 𝑀3 𝑀4 𝑈
equal

𝑈priority

Equal 19.5 16.7 19.5 19.5 18.8 18.9

Representative 19.7 16.7 19.7 17.6 18.4 18.3

Performance Parity 18.8 18.8 18.8 18.8 18.8 18.8

Optimal (𝑈
equal

) 25.5 17.3 17.3 25.5 21.4 -

Optimal (𝑈priority) 20.0 17.3 17.3 30.0 - 22.1

Table 1. Resulting model performances ®𝑀 of different strategies for constructing equitable datasets, along with the average model
performance,𝑈equal, across all four countries. We find that our static methods, equal and representative sampling, result in both lower
than possible average model performance in addition to different country-level outcomes. Sampling adaptively from the group with
the lowest performance results in equal model performance between countries, but still results in lower than possible total model
performance. We also consider an alternative utility function for a policy-maker who wishes to prioritize country 4—for example,
because it has a more effective regulatory environment around deforestation, or it has been traditionally understudied— where
𝑈priority is a weighted average of the country-level model performances with weights ®𝑎 = (1, 1, 1, 1.5) . We find that our framework
allows us the flexibility to prioritize model performance in country 4.

Non-linear specifications of the utility, such as the two above, which directly penalize inequality may be particularly

useful if parity in model performance has large positive externalities to society. However, for simplicity, throughout

the remainder of this work we focus on the case of linear utility,𝑈 (𝑀) = ∑𝐾
𝑘=1

𝑎𝑘𝑀𝑘 , which may be suitable in many

common applications.

3.3 An Illustrative example

We demonstrate our framework via an illustrative example involving our running computer vision hypothetical. Imagine

the researcher has a data collection budget of 𝐵 = 1000, and the cost to label an image in each of 𝐾 = 4 countries is

given by the vector ®𝑐 = (1, 1, 2, 1). Further suppose the group-level learning curves are given by:

𝑀𝑘 (®𝑛) =
©«
𝐾∑︁
𝑗=1

𝛾𝑘,𝑗 · ®𝑛 𝑗
ª®¬
1

2

, 𝛾 =


1 0.3 0.3 0.3

0.3 0.5 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1


. (8)

Because the square root function is increasing and concave, our specification matches the intuition that more data will

increase model performance, albeit at a slowing rate as the size of the training dataset grows. Furthermore, the weights

𝛾 specify that data from any one country helps performance in all the other countries, but at a lesser rate than data

from the same country (i.e., for each row of 𝛾 , the diagonal entry is the largest). For example,

𝑀1 = (𝑛1 + 0.3 · 𝑛2 + 0.3 · 𝑛3 + 0.3 · 𝑛4)
1

2 ,

meaning that the model performance for country 1 scales with the square root of the effective number of training

examples, where training examples from other countries are discounted to 30% that of samples from country 1.

We now consider a variety of strategies for constructing equitable datasets. For example, a model-builder might

decide to label an equal number of training samples from each group, resulting in the allocation ®𝑛 = (200, 200, 200, 200).
Alternatively, a model-builder might decide to create a representative dataset, with 𝑛𝑘 ∼ 𝑝𝑘 , where the vector ®𝑝 =

(2 million km
2, 2 million km

2, 2 million km
2, 1 million km

2) denotes the geographical areas of the four hypothetical
countries we consider. Finally, a model-builder might select the allocation so as to ensure parity in performance across
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the four countries—an outcome that one can achieve by sequentially selecting datapoints from the country with the

lowest model performance until the budget is exhausted [1, 4, 56]. The country-level model performances,𝑀𝑘 , resulting

from these three sampling strategies are shown in the first three rows of Table 1. The second-to-last column in the table

shows the average performance across countries𝑈
equal
( ®𝑀) = 1

𝐾

∑
𝑘 𝑀𝑘 , and, for this utility, the penultimate row in the

table shows the performance under the utility-maximizing allocation ®𝑛∗ = (500, 0, 0, 500).
The results in Table 1 highlight two key points. First, whereas all three common heuristic sampling strategies perform

comparably, the optimized allocation achieves substantially greater utility. This gain stems in part from the fact that

the static strategies did not account for the differential sampling costs. The optimized strategy, recognizing that the

marginal improvement per dollar in country 3 was lower than in other regions, targeted its budget to the remaining

countries. Indeed, in the optimal allocation, no samples were collected from two of the four countries. By avoiding

sampling from relatively expensive countries, the optimal strategy was able to acquire more total datapoints—for

example, while the equal sampling strategy acquired 800 datapoints, the optimal strategy acquired 1,000. Second, even

though the optimal allocation did not collect any samples from countries 2 or 3, it still was able to achieve reasonable

performance in those regions, given the inter-country learning effects. In fact, in country 2, the optimal strategy achieved

higher performance than both the equal sampling and representative sampling approaches. Thus, although all three of

the heuristic sampling approaches seem a priori reasonable, they result in quite different overall and country-level

performances, demonstrating the value of formalizing one’s goals for a dataset, and then optimizing for those objectives.

Finally, we consider an alternative hypothetical scenario where the model-builder wants to intervene to make

the model more inclusive for country 4, perhaps due to a stronger regulatory environment making deforestation

interventions more effective there, or because past research has not included country 4. To encode these preferences, the

model-builder sets𝑈priority ( ®𝑀) = 1∑𝐾
𝑘=1

𝑎𝑘

∑𝐾
𝑘=1

𝑎𝑘𝑀𝑘 , where ®𝑎 = (1, 1, 1, 1.5). The optimal strategy under this setting is

to choose ®𝑛∗ = (143, 0, 0, 857), moving some of the samples in our original optimal solution from group 1 to group 4

to increase the model performance for group 4. (See the last row of Table 1 for country-level performance.) Whereas

traditional approaches to dataset construction do not actively consider such preferences, our framework allows for the

flexibility to pose and optimize for these trade-offs.

4 FINDING OPTIMAL ALLOCATIONS

When the learning curves𝑀𝑘 are known—and the learning curves are concave and utility is linear—standard techniques

from convex optimization allow one to efficiently compute optimal allocations. However, in practice, the learning curves

are not usually known a priori, before data are collected. In this scenario, it is useful to draw a distinction between

situations where sampling is done in one shot, with the allocation determined prior to any data collection, and where

sampling can be done sequentially, in which the model-builder can collect samples one at a time and use information

gleaned from the current sample to decide which group to sample from next. Many real-world scenarios may in fact

lie somewhere between these two extremes, where batches of data are collected at a time and the model builder can

update their sampling strategy between batches. In the sequential or batch-sequential settings, one can estimate the

learning curves at each step using the existing training data, in addition to potentially using prior knowledge from

training similar models. Based on this information, one can then judiciously select the next group to sample from.

Here we present a greedy allocation algorithm, which only requires local estimates of the marginal increase in

model performance, rather than estimates of the full learning curve. In practice, these local estimates can be obtained

by observing how model performance previously changed as more data were added, an approach we demonstrate in
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Algorithm 1 Greedy algorithm to construct an equitable dataset.

ALLOC← START ⊲ ALLOC is an array with element 𝑘 equal to the current number of samples from group 𝑘 .

while ALLOC · COST < 𝐵 do ⊲ Enforce the budgetary constraint, where · is the dot product
for 𝑘 ← 1 to 𝐾 do

PRIORITY[𝑘] ← ESTIMATE_MARGINAL(ALLOC, 𝑘)
end for
GROUP← argmax𝑖 PRIORITY[𝑖]
ALLOC[GROUP] = ALLOC[GROUP] + STEP_SIZE

COST[𝑖 ]
end while

Section 5 in the context of constructing polygenic risk scores. We start by defining a step size 𝑠 , which can be viewed as

the number of dollars we spend at each step of the algorithm. Then, given a current allocation ®𝑛, the next datapoint is
selected from the group that is expected to increase utility the most. That is, the next group 𝑖∗ is selected to satisfy:

𝑖∗ ∈ argmax

1≤𝑖≤𝐾
𝑈

(
®𝑛 + 𝑠

𝑐𝑖
1𝑖

)
= argmax

1≤𝑖≤𝐾

𝐾∑︁
𝑘=1

𝑎𝑘�̂�𝑘

(
®𝑛 + 𝑠

𝑐𝑖
1𝑖

)
, (9)

where𝑈 and �̂� reflect the model-builder’s current estimates. Importantly, to select 𝑖∗ one only needs accurate local

knowledge of the learning curves (i.e., the likely performance gain for an additional sample from that group). Algorithm 1

outlines the process of applying this approach.

In Theorem 1, we show that if the true forms of the learning curves are concave and the data from one group do not

affect the derivative of model performance in the other groups, then the greedy strategy finds the optimal solution

given only knowledge of local marginal improvements. We note that this condition holds in the special case when

the model-builder trains separate models for each group, as is often done in our motivating example of polygenic risk

estimation.

Theorem 1. Suppose the learning curves are concave increasing and utility is linear. Further suppose that the partial

derivatives of the learning curves have no cross-group effects, meaning that if ®𝑝 𝑗 = ®𝑞 𝑗 then

𝜕𝑀𝑘 ( ®𝑝)
𝜕𝑛 𝑗

=
𝜕𝑀𝑘 ( ®𝑞)
𝜕𝑛 𝑗

for 1 ≤ 𝑘 ≤ 𝐾.

Then the greedy algorithm, initialized at the zero allocation ®𝑛 = 0 with a given step size 𝑠 , maximizes𝑈 over all feasible

allocations where 𝑛𝑘 is a multiple of 𝑠
𝑐𝑘

for all 𝑘 .

Proof. First, we define the marginal improvement of utility of the 𝑗th batch from the 𝑖th group:

𝑚𝑖, 𝑗 =

𝐾∑︁
𝑘=1

𝑎𝑘 [𝑀𝑘 (𝑛1, ..., 𝑛𝑖 = 𝑗
𝑠

𝑐𝑖
, ..., 𝑛𝐾 ) −𝑀𝑘 (𝑛1, ..., 𝑛𝑖 = ( 𝑗 − 1)

𝑠

𝑐𝑖
, ..., 𝑛𝐾 )] =

𝐾∑︁
𝑘=1

𝑎𝑘𝑜𝑖 𝑗𝑘 .

By the condition on the partial derivatives, the difference𝑀𝑣 (𝑛1, ..., 𝑛𝑖 = 𝑗 𝑠𝑐𝑖
, ..., 𝑛𝑘 ) −𝑀𝑣 (𝑛1, ..., 𝑛𝑖 = ( 𝑗 − 1) 𝑠𝑐𝑖 , ..., 𝑛𝑘 )

depends only on the value of 𝑛𝑖 , and is independent from all other elements of ®𝑛. Then, we note that any allocation

𝐴 can be written as {(𝑖, 𝑗)}, where (𝑖, 𝑗) ∈ 𝐴 implies that the allocation includes the 𝑗th batch from group 𝑖 . The

model-builder’s utility for an allocation can be written

𝑈 (𝐴) =
∑︁
𝑖, 𝑗 ∈𝐴

𝑚𝑖, 𝑗 .
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Let 𝑑 = 𝐵
𝑠 be the number of batches that the model-builder will purchase. Then, an upper bound on the possible

utility of the allocation is the sum of the 𝑑 highest𝑚𝑖, 𝑗 . We will show that the greedy algorithm at each step chooses

a batch (𝑖, 𝑗) corresponding to the highest value of𝑚𝑖, 𝑗 out of all batches (𝑖, 𝑗) not included in the greedy allocation,

implying that it achieves that upper bound.

Say that our greedy algorithm at step 𝑡 chooses to sample batch (𝑖𝑡 , 𝑗𝑡 ) and batch (𝑖∗, 𝑗∗) has not been sampled. .

Case 1: 𝑖𝑡 = 𝑖∗. Then, 𝑗∗ > 𝑗𝑡 , since the greedy algorithm has already sampled (𝑖𝑡 , 1) ...(𝑖𝑡 , 𝑗𝑡 ).

𝑚𝑖𝑡 , 𝑗𝑡 =

𝑘∑︁
𝑣=1

𝑎𝑣𝑜𝑖𝑡 𝑗𝑡 𝑣 >

𝑘∑︁
𝑣=1

𝑎𝑣𝑜𝑖𝑡 𝑗∗𝑣 =𝑚𝑖∗, 𝑗∗

where the inequality is given by the concavity of the learning curves and that 𝑗∗ > 𝑗𝑡 .

Case 2: 𝑖𝑡 ≠ 𝑖∗. Let 𝑗 ′ be the number of batches the greedy algorithm has sampled from group 𝑖∗. Then,𝑚𝑖𝑡 , 𝑗𝑡 >=

𝑚𝑖∗, 𝑗 ′+1 >=𝑚𝑖∗, 𝑗∗ , where the first inequality comes from the fact that our algorithm is greedy and the second comes

from the concavity of the learning curves. □

Theorem 1 shows that the greedy algorithm is provably optimal when the learning curves do not have cross-group

effects. However, numerical experiments suggest that the greedy algorithm is optimal in a wide-variety of settings

beyond those satisfying the conditions of the theorem. Consider, for instance, our running computer vision example.

The learning curves defined by Eq. (8) violate the assumptions of Theorem 1, as the marginal learning rates in each

group depend on the number of samples currently collected in all other groups. Nonetheless, we find that the greedy

algorithm achieves the optimal utility for both the equal utility and the prioritized utility functions, as shown in Table 1.

To further investigate the behavior of the greedy algorithm, we conducted an extensive set of numerical experiments.

We specifically considered random problem instances in which the number of groups 𝐾 varied from 2 to 10, costs ®𝑐 were
randomized such that 𝑐𝑘 ∼ UNIF(0, 1), weights of the utility function ®𝑎 were randomized such that 𝑎𝑘 ∼ UNIF(0, 1),
and the learning curves were randomized so that:

𝑀𝑘 (®𝑛) = 𝑓
©«
𝐾∑︁
𝑗=1

𝛾𝑘,𝑗 · ®𝑛 𝑗
ª®¬ , 𝛾𝑘,𝑗 ∼ UNIF(0, 1), (10)

for two functional forms, 𝑓 (𝑥) = log(𝑥) and 𝑓 (𝑥) =
√
𝑥 . Under all circumstances, we find that the mean absolute

difference between the solutions found via convex optimization and the greedy algorithm approaches 0 as the step size

goes to 0. These numerical findings suggest that the greedy algorithm is a robust approach to finding optimal allocations

under a wide range of conditions; analytically characterizing the algorithm’s properties would be an interesting direction

for future work.

5 AN APPLICATION TO POLYGENIC RISK SCORES

5.1 Background

We now transition from our simple, stylized deforestation example to a more detailed application involving polygenic

risk scores (PRSs). Polygenic risk scores are statistical models which use the presence of genomic variants in one’s DNA

sequence in order to estimate risk for developing a complex disease. PRSs have been found to be predictive for many

complex genetic diseases such as coronary artery disease and Type 2 diabetes [38], and are believed to be promising

tools for risk stratification for health interventions more broadly.
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However, PRSs have been found to exhibit disparities in performance across groups defined by ancestry [23].

Specifically, many PRSs have been found to perform worse in people of African descent. The main cause of this

performance gap is thought to be a lack of ancestral representation in genome-wide association studies (GWAS), from

which the datasets to train polygenic risk scores typically come. To date, about 52% of all GWAS were conducted in

populations of European descent compared to 10% in populations of African descent, and 78% of individuals who appear

in GWAS are of European ancestry compared to 2% of African ancestry [57]. Furthermore, 72% of individuals in GWAS

were recruited from only three countries: the United States, the United Kingdom, and Iceland [45]. Additional work has

shown this lack of diversity in GWAS could result in over- or under-estimation of genetic disease risk in understudied

populations and could potentially exacerbate health disparities [25, 57].

Despite calls for additional representation for non-European ancestries in GWAS and PRSs [43, 52, 57], it is still

unclear exactly how a model-builder interested in constructing a PRS should allocate their limited funding between

gathering genomic data from people of different ancestries. To demonstrate how our framework might be applied in this

setting, we use a simulation framework developed by domain experts [16, 37] to first generate a synthetic population of

people with different ancestries, and then train PRS models under various sampling strategies.

5.2 Simulation details

Following Cavazos and Witte [16], we simulated genomes of 200,000 people of European (CEU) and African (YRI)

descent, along with the presence of a phenotype (disease) with 5% prevalence in both populations. We used the simulated

data to train separate PRSs in each population, evaluating model performance over a variety of training allocations (see

Appendix B for further details). Out of the 10,000 people who will get the disease (called “cases”) and 190,000 people

who will never get the disease (called “controls”), we chose a random sample of 5,000 cases and 5,000 controls to be the

obtainable training data. Trained models were evaluated on a holdout test set comprised of the remaining 5,000 cases

and 95,000 other randomly selected controls.

For our hypothetical disease, we imagine there is a health intervention that has cost 𝑐 and benefit 𝑏. That is, for an

individual 𝑖 , the intervention has value

𝑉 = 𝑏𝑑𝑖 − 𝑐, (11)

where 𝑑𝑖 is an indicator variable for whether the person will eventually get the disease. If 𝑝 denotes one’s estimated

likelihood of developing the disease, based on the available genomic data, the expected value of intervening is:

E[𝑉 | 𝑝] = 𝑏𝑝 − 𝑐. (12)

Suppose the cost and benefit of the intervention are given by 𝑐 = 5 and 𝑏 = 100, constants which we use for the

remainder of our analysis.
2
Then the expected value of the intervention is positive for individuals for whom 𝑝 > 0.05,

negative for 𝑝 < 0.05, and zero for 𝑝 = 0.05. Given the base prevalence of the disease is 5%, the expected utility of

intervening on a random person is 0. However, if the model-builder is able to identify and selectively treat individuals

at high risk for the disease, the intervention can yield positive value.

Given a predictive model
ˆ𝑓𝑇®𝑛 trained on the genomic dataset 𝑇®𝑛 , the value-maximizing intervention strategy is to

treat those with estimated risk greater than 0.05. We define the group-level model performance of a training allocation

to be the expected value from applying this decision rule on a random member of the group:

𝑀𝑘 (®𝑛) = E𝑇®𝑛E𝑋 0,𝑌 0 [𝐺 (𝑌 0, ˆ𝑓𝑇®𝑛 (𝑋
0)) | 𝑋 0

𝑔 = 𝑘], (13)

2
We note that the cost here could either be monetary or health-related, such as radiation exposure from X-rays.
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Algorithm 2 Implementation of ESTIMATE_MARGINAL for PRS application

ESTIMATE_MARGINAL(ALLOC, k) :

𝑋 ← SEQ(MAX(START[𝑘], ALLOC[𝑘] − (𝑚 − 1) · STEP_SIZE), ALLOC[𝑘], STEP_SIZE)
𝑌 ← [MODEL_PERF(𝑥) for x in X]
ˆ𝛽, ŜE𝛽 ← LINEAR_REGRESSION(Y, X)

𝑍 ← 𝑁+ ( ˆ𝛽, ˆSE2
𝛽
)

RETURN(𝑍 · STEP_SIZECOST[𝑘 ] )

where

𝐺 (𝑋0, 𝑌0) = 1 ˆ𝑓𝑇®𝑛 (𝑋
0)>0.05 · (𝑌

0𝑏 − 𝑐), (14)

and the pair (𝑋 0, 𝑌 0) represents the genomic markers and eventual disease status of a random individual belonging to

group 𝑘 .

5.3 Constructing equitable datasets

We consider a scenario in which the model-builder has budget 𝐵 = 5000, and where samples from each group cost

1 unit, where a sample is a single case-control pair. The model-builder begins initially with 500 samples from each

group, and must then choose how to allocate their budget in increments of 𝑠 = 100. We evaluate a variety of policies for

allocating the budget between sampling from CEU (European descent) and YRI (African descent) data. We specifically

consider two static policies: (1) representative sampling, where the proportion of training data from both groups mirrors

their proportion in the overall population;
3
and (2) equal sampling, where 𝑛YRI = 𝑛CEU. To adhere to the step-size 𝑠 ,

we restrict these static policies to the closest allocations with 𝑛CEU and 𝑛YRI being multiples of 𝑠 . We also consider

two active sampling strategies, which allocate the budget sequentially: (1) sampling from the group which currently

has lower model performance, in an effort to achieve performance parity [1]; and (2) our greedy adaptive sampling

algorithm discussed in Section 4.

To apply our adaptive sampling method (Algorithm 1), the model builder needs to estimate the marginal improvement

in utility 𝑈

(
®𝑛 + 𝑠

𝑐𝑘
1𝑘

)
−𝑈 (®𝑛) for each group 𝑘 given their current allocation ®𝑛. We outline our implementation of this

estimation problem in Algorithm 2. Our method for estimating the marginal improvement is to keep track of our model

performance at each allocation, and then construct a local approximation of the learning curve via linear regression,

using the last𝑚 = 5 measurements of model performance (or all the available points, if fewer than five models have

been trained for a given group). The choice of𝑚 can be thought of as a bias-variance trade-off, where higher𝑚 leads

to bias because the true slope is decreasing but low𝑚 leads to variance because the individual observations of model

performance are noisy. Then, for each group 𝑘 ∈ {YRI,CEU} we get both an estimate
ˆ𝛽𝑘 of the increase in performance

per training sample, and a standard error ˆ𝑆𝐸𝛽𝑘 of that estimate. To account for noise in our estimate, we select the

next group to sample based on a draw
˜𝛽𝑘 ∼ 𝑁+

(
ˆ𝛽𝑘 ,

ˆ𝑆𝐸
2

𝛽𝑘

)
, where 𝑁+ is the truncated normal distribution, bounded

from 0 to∞. This procedure can be thought of as analogous to Thompson sampling, with a prior that more data cannot

decrease model performance. We apply this stochastic method due to challenges in estimating model performance.

In a setting where model training was computationally inexpensive, one might alternatively address this problem by

3
We assume the intervention is being done in the United States, and use the proportion of Black and non-Hispanic white individuals in the 2020

census [12].
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Fig. 1. The learning curves of our polygenic risk score model, where each point represents the average per-capita utility for members
of a group if the training set contains 𝑥 number of people in that group. The PRS both starts with a better performance and improves
faster for the YRI group.
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Fig. 2. The performance Pareto frontier of our setting, where each point corresponds to an allocation of our budget 𝐵 = 5, 000 such
that 𝑁CEU + 𝑁YRI = 𝐵, 𝑁CEU ≥ 500, 𝑁YRI ≥ 500. Going left to right, as we increase the proportion of our allocation towards gathering
samples from the CEU group, the model performance𝑀YRI decreases and𝑀CEU increases. We evaluate strategies for constructing
equitable datasets, finding that the greedy adaptive sampling algorithm is able to find near-optimal policies under a wide range of
utility specifications.

bootstrapping the collected data and training and evaluating several models at each training size; in our setting, though,

that approach was not feasible, as PRSs are computationally intensive to train.

5.4 Results

Following the above setup, Figure 1 shows the learning curves of the two group-level performances𝑀YRI and𝑀CEU as

a function of the size of the dataset used to train each group’s models, 𝑁YRI and 𝑁CEU, across 50 simulations. In our
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hypothetical scenario, we find, for a fixed number of training samples, that the polygenic risk score for individuals of

African ancestry both starts off with a higher performance at the minimum 500 samples (𝑀YRI = 1.69, 𝑀CEU = 0.158),

and has improved roughly by twice as much at the maximum possible 5,000 samples (𝑀YRI = 2.31, 𝑀CEU = 0.447,ΔYRI =

0.62,ΔCEU = 0.289). We note that this phenomenon is a consequence of the way we selected the parameters of our

simulation; it is intended only as an illustrative example, and is not representative of broader trends (see Appendix B

for details).

In our setting, the model builder can choose any training allocation ®𝑛 = (𝑁CEU, 𝑁YRI) such that 𝑁CEU + 𝑁YRI ≤ 5000

(with 𝑁CEU ≥ 500 and 𝑁YRI ≥ 500, given the initial dataset). The black line in Figure 2 shows the tradeoff between

𝑀CEU and𝑀YRI over all possible choices of ®𝑛 such that 𝑁CEU +𝑁YRI = 5000. Along this frontier, we plot both the model

performances resulting from an equal sampling policy (®𝑛 = (2500, 2500)), along with that of a representative sampling

policy (®𝑛 = (3300, 700)), which has more samples from𝑀CEU because we set our hypothetical intervention in the United

States. We find that the resulting policies differ drastically in where along the frontier they fall. In particular, relative

to the equal-sampling strategy, the representative-sampling strategy (which samples more individuals of European

descent) implicitly sacrifices substantial gains in model performance for individuals of African descent for more modest

performance gains for individuals of European descent.

In addition to these two commonly employed static strategies, we plot the results of a third, dynamic strategy,

which attempts to equalize model performance by sampling from the worst-performing group at each step. In our

simulation, this strategy always samples from the CEU group, since it has lower performance at all allocations ®𝑛. This
strategy—labeled “performance parity” in Figure 2—results in trading off a large amount of𝑀YRI for a very small amount

of𝑀CEU. Indeed, because the marginal increase of𝑀CEU per training sample becomes essentially zero, the point does

not even appear on the frontier in Figure 2.

Where these three sampling strategies—equal, representative, and performance parity—lie on the frontier will, in

general, vary depending on the structure of the learning curves. For instance, in a scenario where CEU performance

increased faster than YRI performance, representative sampling would result in trading off a relatively lower amount

of YRI performance for a higher amount of CEU performance relative to our setting. In particular, as the two static

sampling strategies consider only the composition of the training dataset and not its impact on model performance,

they will be unstable in their valuations for group-level model performances in different circumstances.

Depending on the training allocation, one can land anywhere on the black frontier in Figure 2. But where exactly

one might choose to land depends on application-specific considerations. We now imagine a model-builder with utility

that is linear in the group-level model performances:

𝑈 (𝑀CEU, 𝑀YRI) = 𝑎CEU𝑀CEU + 𝑎YRI𝑀YRI,

where the weights ®𝑎 = (𝑎CEU, 𝑎YRI) are non-negative and determine where on the frontier the optimal policy falls.

For various settings of the weights, we run our greedy sampling algorithm, initialized at the allocation ®𝑛 = (500, 500).
The red line in Figure 2 shows the resulting model performances while we vary

1

1000
≤ 𝑎CEU

𝑎YRI
≤ 1000. We find that our

approach is able to identify near-optimal policies over a wide range of specifications for utility, with a small amount of

loss due to noise in our estimation of the marginal improvement (Algorithm 2).

Finally, we consider the question of how a model-builder might decide to set ®𝑎 in their specification of utility. If we

take the point of view that the benefit 𝑏 and cost 𝑐 of the intervention are in units of lives saved, setting ®𝑎 = (𝑝CEU, 𝑝YRI)
to be proportional to the size of the group in the overall population optimizes the total number of lives saved. The

resulting policy given by these weights is labeled “Greedy (𝑈representative)” in Figure 2. We note that this sampling
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strategy is distinct from representative sampling, which sets the composition of the training dataset to be proportional to

the size of the group, instead of the valuations on model performance. In particular, when optimizing for𝑈representative,

the greedy strategy recognizes that although the YRI group is smaller, it has higher marginal gains in performance, and

thus samples more heavily from that group than does the representative-sampling strategy. In this case, the greedy

strategy optimizing for 𝑈representative has both higher group-level performance for the YRI group as well as higher

overall performance than representative sampling.

Another natural choice might be to set ®𝑎 = (1, 1), so that model performance is valued equally among the two groups.

This strategy, labeled “Greedy (𝑈
equal
)” in Figure 2, results in drawing more samples from the YRI group compared to

the greedy strategy with representative weights, since the size of the groups is ignored and the YRI group, which has a

higher marginal improvement per training sample, is prioritized. We note that this notion of equal value for group-level

model performance is different than both model parity (the closest strategy to parity results in sampling only from

CEU), and equal sampling, which enforces equality in the training set composition instead of the model performance

valuations.

Finally, a model-builder might take the point of view that PRSs have traditionally excluded those of African de-

scent [23], and put model performance for that group at a premium by setting ®𝑎 = (1, 1.50). The resulting model

performances from running the greedy algorithm with these preferences is labeled “Greedy (𝑈priority)”, and is very

close to the resulting performances for the last specification ®𝑎 = (1, 1), reflecting that moving further toward the upper

left of the plot requires a large trade-off in 𝑀CEU to achieve a small gain of 𝑀YRI. This pattern is a function of this

particular learning curve, and, in a different setting, the priority might result in a much different allocation than the

greedy sampling strategy with equal weights.

6 DISCUSSION

Statistical models across a wide variety of domains have been shown to exhibit disparities in model performance, in

part due to lack of representation in the datasets they are trained on. To mitigate this problem, we present a framework

for a model-builder to specify a preference over resulting group-level model performances, and then formalize the

task of constructing a dataset as a constrained optimization problem. We present an adaptive sampling algorithm for

constructing datasets which takes into account both the structure of how data from one group affects model performance

in the others in addition to the cost of acquiring data. We showed both empirically and analytically that taking these

two factors into account allows our adaptive algorithm to identify near-optimal solutions, and can avoid some of the

unintended consequences that can arise with static sampling methods such as equal or representative sampling. Finally,

we demonstrated how our framework allows for the model-builder to efficiently intervene when circumstances dictate

that model performance should be prioritized for a given group: for example, due to traditional models underserving a

group, or model performance better translating to impact in that group.

Our findings can inform practitioners as well as policymakers seeking clarity on what would constitute sufficiently

representative and inclusive datasets. In particular, our findings demonstrating drawbacks of static sampling methods

suggest that future guidelines or requirements around dataset representativity [2] should take care not to codify

sampling approaches that are insufficiently flexible in considering all the factors surrounding the construction of a

dataset, including the effects of sampling strategies on actual model performance.

We conclude by noting some important limitations of our analysis. First, although our greedy algorithm appears to

work well for one natural family of learning curves𝑀𝑘 , it may not be an effective approach in every instance. There are

many types of data and many methods of training models using such data, which can result in a variety of different
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structures for the learning curves. For instance, a deep learning approach to training PRSs might use all available data

for a single model instead of training separate models such as in our example [5]. A promising direction for future

work is to consider how our framework might be applied to a variety of different approaches to building models in

different domains. Second, our greedy algorithm requires the model-builder to estimate the marginal improvements in

𝑀𝑘 at each step, which can be statistically and computationally challenging, especially when there are limited data for

certain groups or when training models requires significant computing resources. Third, in this work we considered

a particular specification of utility, but others may be appropriate depending on the setting. For instance, if data are

collected with the purpose of being used in the future in addition to training a model, the utility function might also

encode the value of the data for training future models. Finally, this method may not be applicable in circumstances

where a training dataset cannot be responsibly expanded, such as data regarding individuals’ interaction with police or

the criminal legal system, or where privacy interests are determined to outweigh model performance or fairness goals;

in such cases, approaches leveraging synthetic data or experimenting with alternative modelling options may be more

appropriate to address fairness concerns.

We see our work as part of a broadening of how machine learning practitioners operationalize algorithmic fairness. In

addition to approaches tailored to improving the equity of models trained on static datasets, it is important to consider

issues that arise at various stages of the training and deployment of statistical models, including constructing equitable

training sets [27, 27, 31, 31, 44, 44, 51, 51], interventions to bolster model performance for traditionally underserved

groups, such as screening [6, 13, 49], and designing more equitable interventions given a set of risk scores [17]. We

hope our work will help support these ongoing efforts.
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A GENETICS GLOSSARY

Causal Variant In the context of Genome-Wide Association Studies (GWAS), causal variants are genetic variants

that have a biological effect on polygenic diseases (e.g. coronary heart disease, cancer, diabetes), which are diseases

caused by the combined effects of multiple genes.

Genome An individual organism’s complete set of genetic instructions; DNA.

Genome-Wide Association Studies (GWAS) Studies performed for use in genetics research to identify genetic

variants present at a higher frequency in individuals with a specific trait (e.g., a disease) in a population.

Genotype A subset of genes in an individual organism, which can contribute to a phenotype.
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Minor Allele Frequency (MAF) The proportion of time the allele that appears less frequently in a given population

occurs.

Phenotype Observable traits such as height, eye color, and presence of a disease in an individual.

B PRS DETAILED MATERIALS AND METHODS

Following Cavazos and Witte [16], we simulate European (CEU) and African (YRI) ancestry genotypes for chromosome

20, simulating genomes of 200,000 people of European descent and 200,000 people of African descent. We then computed

the minor allele frequency (MAF) for each population throughout the simulated genotypes and ranked the genotypes by

the difference𝑀𝐴𝐹YRI −𝑀𝐴𝐹CEU. We chose the top ranked 1,000 variants as our casual variants to simulate a disease

where a PRS might have more predictive power in one group, in this case those of African descent.

For each selected causal variant 𝑖 , we continue following Cavazos et al. [16], drawing an effect size 𝛽𝑖 ∼ 𝑁 (0, ℎ2

1000
),

where ℎ = 1

2
controls the trait heritability. We then compute the total genetic liability for individual 𝑗 as𝑋 𝑗 ∼

∑
1000

𝑖=1 𝛽𝑖𝑔𝑖 ,

where 𝑔𝑖 is an indicator variable for if the genetic variant appears at location 𝑖 in person 𝑗 ’s DNA sequence. Then,

we compute the non-genetic effect as 𝜖 𝑗 ∼ 𝑁 (0, 1 − ℎ2). After both 𝑋 and 𝜖 are standardized (𝐺 =
𝑋−𝜇𝑋
𝜎𝑋
∗
√
ℎ2, 𝐸 =

𝜖−𝜇𝜖
𝜎𝜖
∗
√
1 − ℎ2) they are added to obtain the total trait liability (G+E). Each individual is then ranked by their total trait

liability and the top 5% of individuals in the CEU and YRI populations are given the phenotype (disease), 𝑌 = 1, with

the rest having 𝑌 = 0.

To train the polygenic risk scores in the CEU and YRI populations, a GWAS is conducted to select genetic variants

for inclusion. Genetic variants were selected via a standard two-step process of p-value thresholding and clumping.

For each genotype with a MAF > 1%, we compute an odds ratio and assess statistical significance with a chi-squared

test, with all genotypes with 𝑝 < .01 being selected. We further filtered the genotypes via clumping to remove highly

correlated adjacent genotypes, removing genotypes within a 1MB window that have a Pearson correlation of 𝑟 = .2. For

each individual, their empirical PRS was given by

∑𝑉
𝑖=1 log(𝑂𝑅𝑖 )𝑔𝑖 , where 𝑉 is the number of remaining variants after

the clumping + thresholding process,𝑂𝑅𝑖 is the odds ratio for the 𝑖th selected variant, and 𝑔𝑖 is an indicator variable for

whether the variant is present in that person. Lastly, we use Platt scaling to convert each PRS for an individual to a

probability of disease risk.
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