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Abstract

Among health care researchers, there is increasing debate over how best to
assess and ensure the fairness of algorithms used for clinical decision sup-
port and population health, particularly concerning potential racial bias.
Here we first distill concerns over the fairness of health care algorithms
into four broad categories: (a) the explicit inclusion (or, conversely, the ex-
clusion) of race and ethnicity in algorithms, (b) unequal algorithm decision
rates across groups, (c) unequal error rates across groups, and (d) potential
bias in the target variable used in prediction. With this taxonomy, we crit-
ically examine seven prominent and controversial health care algorithms.
We show that popular approaches that aim to improve the fairness of health
care algorithms can in fact worsen outcomes for individuals across all racial
and ethnic groups. We conclude by offering an alternative, consequential-
ist framework for algorithm design that mitigates these harms by instead
foregrounding outcomes and clarifying trade-offs in the pursuit of equitable
decision-making.
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1. INTRODUCTION

Over the past two decades, organizations across sectors have developed and deployed algorithms
to enhance decision-making. In health care, algorithms are increasingly used to guide high-stakes
decisions, including disease screening and treatment, as well as to allocate limited health care re-
sources. Algorithmic decision-making promises to increase efficiency and reduce subjectivity, but
researchers and clinicians have raised concerns that health care algorithms exacerbate inequities,
particularly relating to race and ethnicity.

In this article, we survey a wide range of prominent health care algorithms used for population
health and individual decision support, all of which have been the subject of extensive debates over
their fairness. While the term fairness itself is contested, we use it here to describe an algorithm’s
tendency to enhance rather than diminish the equity of decisions. The clinical algorithms we
consider span several medical fields, including oncology, obstetrics, cardiology, and nephrology,
and concern both shared decision-making and the allocation of limited resources. Using these
algorithms as case studies, we distill into four categories the myriad fairness concerns that have
been raised for health care algorithms: (a) the inclusion (or, conversely, the exclusion) of race and
ethnicity in algorithm inputs, (b) unequal algorithm decision rates across groups, (c) unequal error
rates across groups, and (d) potential bias in the target variable used in prediction. In Table 1, we
situate into this structure each of the algorithms we consider.

We briefly summarize these four broad concerns before discussing them in depth in subse-
quent sections. The use of race and ethnicity in health algorithms is heavily debated (18–20, 56,
61–63, 67). Advocates for race-aware algorithms argue that explicitly considering race improves
the accuracy of decisions for all groups (1, 38, 39, 42, 67). Conversely, proponents of race-unaware
algorithms—commonly called “race-blind” algorithms—argue that using race perpetuates perni-
cious racial attitudes and exacerbates racial and ethnic inequities (23, 33, 56, 61–63). In addition to
scrutinizing an algorithm’s inputs, researchers have sought to assess the fairness of algorithms by
examining differences in decision and error rates across racial and ethnic groups. For example, in

Table 1 Taxonomy of health care algorithms and their fairness concerns

Algorithm Use of race
Unequal decision

rates
Unequal error

rates Label bias
Not resource

constrained
Lung cancer incidence
risk model

3 3

Lung cancer LYFS
model

3 3 3 3

VBAC success
calculator

3 3

CVD incidence risk
model

3 3 3

Resource
constrained

CVD hospital
mortality risk model

3

Kidney function
(eGFR) equation

3 3

Health care need
prediction models

3

Abbreviations: CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; LYFS, life-years from screening; VBAC, vaginal birth after
cesarean.
We situate each of the seven algorithms considered in this review within our taxonomy of the four main fairness concerns for clinical and population health
algorithms.
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the context of lung cancer, researchers have noted that common algorithms recommend different
screening rates across racial groups and also exhibit racial gaps in missed referrals for screening
(i.e., unequal error rates) (2, 50). As a result, many proponents advocate for designing algorithms
to equalize decision and error rates across groups (37). That strategy seeks to ensure that the ben-
efits and burdens of algorithmic decision-making are shared equally across groups, although it
also tacitly ignores differences in need and individual preferences. Finally, there is concern among
researchers over the mismeasurement of target variables used for prediction in health care al-
gorithms, a problem also known as “label bias” (66). For example, algorithms trained to predict
health care expenditure as a proxy of health care need may underallocate health care resources to
disadvantaged groups due to racial disparities in health care access and expenditure (49).

Many of the fairness concerns raised for health care algorithms focus on how an algorithm
makes decisions: For example, does it use race, or does it equalize decisions across groups? That
focus contrasts with a perspective that foregrounds outcomes, an approach to ethical decision-
making often called consequentialism. From a consequentialist perspective, what renders an
algorithm fair is its impact on individuals and society, not its set of inputs or some particular
statistical summary. Consequentialism suggests an algorithm be designed to maximize aggregate
utility, the overall desirability or benefit that comes from a specific decision or policy. In the health
care context, utilitymight encapsulate quantitativemeasures, such as life-years gained, or improve-
ment in quality of life, as well as the monetary and nonmonetary costs associated with unnecessary
testing.

In this article, we argue that the dominant approach to designing fair health care algorithms—
one that, for example, seeks to equalize decision or error rates—can often harm the groups it seeks
to protect. Instead, we advocate for adopting a consequentialist perspective to algorithm design.
The remainder of our article is structured as follows. Beginning with an extended case study of risk
algorithms for lung cancer,we unpack the four broad categories of fairness concerns for health care
algorithms outlined above. We then expand our discussion by reviewing several more prominent
health care algorithms that have been the subject of recent fairness debates. Finally, we conclude
with an example that illustrates the value of a consequentialist framework, offering a path forward
for designing equitable algorithms in health care and beyond.

2. FAIRNESS CONCERNS IN LUNG CANCER SCREENING

In the United States, lung cancer is the third most commonly diagnosed cancer and is the leading
cause of cancer-related death (8). Black men in the United States have higher rates of lung cancer
incidence and mortality than do men in any other racial or ethnic group (45, 46). Researchers
have attributed these disparities to differences in social determinants of health—such as access to
health care and exposure to carcinogens—that are correlated with race and ethnicity, with race
and ethnicity acting as surrogates for these factors in clinical models for lung cancer (58).

Screening in the form of low-dose computed tomography (CT) scans remains the most effec-
tive method for diagnosing and informing treatment for lung cancer. However, screening comes
with both monetary and nonmonetary costs, such as the direct cost of the scan, taking time
away from work, and the psychological stress associated with screening and false positives. Given
these trade-offs, the United States Preventive Services Task Force (USPSTF) recommends an-
nual screening only for high-risk individuals: adults aged 50–80 years who have a 20 pack-year
smoking history and currently smoke or have quit within the past 15 years (35). Researchers have
also developed risk models to produce more personalized estimates of risk (10, 31, 60). To identify
high-risk individuals, clinicians use thresholds on these risk scores to inform recommendations
for follow-up screening.

www.annualreviews.org • Racial Bias in Health Algorithms 509
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The algorithms used to produce these risk scores are the subject of extensive debate, particu-
larly with respect to their inclusion of race (37) and how the use of race interacts with the choice
of target variable, tying into discussions on label bias (58). Furthermore, the fairness of these risk
models has been characterized in terms of differences in decision and error rates across demo-
graphic groups (2, 50). Using lung cancer as an extended case study, we discuss in more depth the
four categories of fairness concerns listed above and offer empirical evidence on the consequences
of employing different approaches to fairness popular in the literature.

2.1. The Use of Race

To develop the most statistically accurate models, some researchers have recommended using
race-aware algorithms that account for racial and ethnic disparities in lung cancer incidence and
mortality (10, 31, 37, 60). Medical societies, such as the American Thoracic Society, have also
recommended augmenting the USPSTF guidelines with race-aware predictive models to guide
decisions, in part to identify more high-risk racial minorities for screening (53). However, adjust-
ments for race in clinical algorithms are widely debated across numerous disease contexts, as well
as in medicine more generally (23, 30, 56, 61–63, 67). Many researchers have advocated for elim-
inating race and ethnicity in similar risk estimation tools due to concerns that including race and
ethnicity reifies race as biologically meaningful andmay in turn result in inappropriately racialized
medical treatment (56, 61–63).

2.2. Unequal Decision Rates Across Groups

Researchers have sought to evaluate the fairness of lung cancer risk models by comparing screen-
ing recommendation rates across groups. For example, Landy et al. (37) propose a (necessarily)
race-aware model that ensures that screening rates for racial and ethnic minorities are equal to
or greater than that of White individuals. While perhaps intuitively appealing, equalizing such
decision rates can harm members of all groups. To see this potential harm, we note that in shared
decision-making contexts such as with lung cancer screening, the decision threshold—in this case,
the screening threshold—is set at the point of indifference, where the costs of the decision are ex-
pected to equal the benefits (51). As a result, individuals with true risk above the decision threshold
are expected to have positive utility from being screened. Conversely, individuals with true risk
below the threshold are expected to have negative utility from being screened (e.g., from incurring
the costs of screening while expecting little benefit). However, equalizing decision rates does not
consider an individual’s utility for being screened and may thus impose utility losses from over-
or underscreening individuals.

To see how equalizing decision rates can produce these undesired consequences, consider
Figure 1a, which shows distributions of lung cancer risk as estimated by the LungCancer Risk As-
sessment Tool (LCRAT), disaggregated by race and ethnicity, using data from the National Lung
Screening Trial (NLST) (47). [Figure 1mirrors analyses performed by Chohlas-Wood et al. (11).]
In this population, 62% of White individuals have a risk score above the recommended screen-
ing threshold of 2% (31, 32); 35% of Asian individuals, 36% of Hispanic individuals, and 74% of
Black patients are also above the threshold. As evident in the plot, these differences in decision
rates arise primarily due to differences in the group-level distributions of risk.

Now consider a policy that sets group-specific thresholds on risk so that Asian, Hispanic, and
Black individuals are recommended for screening at the same rate as White individuals (62%).
Under this approach, Asian and Hispanic individuals with risk above 1.2% would be screened,
which includes many relatively low-risk individuals for whom screening would be expected to
yield negative utility. Examples of sources of negative utility from screening include pain and

510 Coots et al.
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a  All individuals b  Individuals with lung cancer
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Lung cancer risk (%) Lung cancer risk (%)
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Expected net cost from screening

Expected net bene�t from screening

Asian

Black

Figure 1

The distribution of lung cancer risk for all individuals and individuals with lung cancer. Estimates of risk were generated using the lung
cancer risk assessment tool (LCRAT). The dashed vertical lines correspond to screening thresholds that equalize (a) decision rates
across groups and (b) false negative rates across groups. The vertical black line indicates the recommended screening threshold of 2%.

complications from invasive biopsies or surgeries. Yet only Black individuals who have relatively
high risk of lung cancer—above ∼2.6%—would be screened, leaving out many Black individuals
for whom screening would be expected to have net benefits, also resulting in lost utility. Thus,
equalizing screening rates across groups would in fact harm Asian,Hispanic, and Black individuals
by failing to screen some individuals who are expected to benefit from screening and screening
others for whom the costs are expected to outweigh the benefits.

2.3. Unequal Error Rates Across Groups

Other work has sought to assess the fairness of the USPSTF screening criteria in terms of group-
level sensitivity1 (2, 50).This analysis amounts to a comparison of false negative rates (FNR), given
that FNR is 1− sensitivity. These studies (2, 50) have shown that the USPSTF criteria fail to rec-
ommend Black individuals with lung cancer for screening at higher rates than White individuals.
Consequently, some researchers recommend lowering the USPSTF criteria on smoking history
to increase screening among Black individuals with lung cancer (2, 50). This argument, however,
similarly fails to account for differences in risk distributions across groups.

To see how equalizing error rates—much like equalizing decision rates—can produce unde-
sired consequences, consider Figure 1b. We depict distributions of estimated lung cancer risk (as
estimated by the LCRAT) among people who have lung cancer. Under a policy of screening pa-
tients above the recommended 2% threshold, Hispanic individuals have the highest false negative
rate at 44%, Asian individuals have an FNR of 28%, White individuals have an FNR of 13%,
and Black individuals have the lowest FNR at 10%. Equalizing false negative rates across groups
(while leaving risk estimates unchanged) requires the use of group-specific screening thresholds.

1The sensitivity equals TP/(TP + FN), where TP is the number of true positives, and FN is the number of
false negatives.

www.annualreviews.org • Racial Bias in Health Algorithms 511
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For example, screening Hispanic individuals above a 1.1% threshold, screening Asian individu-
als above a 1.3% threshold, screening White individuals above a 2.1% threshold, and screening
Black individuals above a 2.3% threshold would result in all groups having a false negative rate of
∼15%.However, such a policy would recommend screening for some relatively low-risk Hispanic
and Asian individuals, resulting in expected utility losses for some members of these groups. In
general, equalizing error rates across groups may harm members of all racial and ethnic groups.

2.4. The Risk of Label Bias

Not all lung cancer risk models are designed to predict the same outcome. The LCRAT and
PLCOm2012models predict lung cancer incidence,whereas the life-years gained from screening–
CT (LYFS-CT)model predicts expected benefit from screening (10, 31, 60).However, researchers
have expressed concern that models—particularly race-aware models—that predict life-years
gained from screening are susceptible to label bias due to differences in life expectancy across
racial and ethnic groups (58). Black individuals have lower average life expectancy than do White
individuals, with researchers attributing these gaps to differences in social determinants of health,
such as income and geography (55). A model that predicts life-years gained from screening may
therefore risk predicting patterns in social determinants of health as opposed to absolute benefits
of screening.

As we have seen in the case of lung cancer, fairness concerns in algorithmic decision-making
are nuanced, and divorcing measures of fairness from outcomes may produce unintended and
undesired consequences. These issues are not isolated to lung cancer screening but are pervasive
across algorithms used in health care, which we explore further in the following sections.

3. CASE STUDIES ON THE FAIRNESS OF HEALTH CARE ALGORITHMS

We next examine several prominent—and, in some cases, controversial—health care algorithms
used for risk estimation and resource allocation. For each algorithm, we briefly review its genesis
and intended applications and discuss the relevant fairness concerns they invoke.

3.1. Risk Estimation

We first consider three risk scores used in obstetrics and cardiology. As shown in Table 1, two
of these risk scores are used in a shared decision-making context, and one is used in a resource-
constrained setting.

3.1.1. Vaginal birth after cesarean. Among pregnant womenwho previously have had cesarean
sections (C-sections), there are trade-offs to a trial of labor (TOLAC, or trial of labor after ce-
sarean). Vaginal births have well-established advantages over repeat C-sections, including shorter
recovery times, lower risks of infection and hemorrhage, and better outcomes in future pregnan-
cies (15).However, for some women, these benefits may not outweigh the risks. Vaginal birth after
cesarean (VBAC) success calculators help health care providers and pregnant women weigh this
decision. The first VBAC calculator—called the Grobman calculator—was developed to predict
the likelihood of a successful VBAC by considering factors such as age, body mass index (BMI),
any prior vaginal delivery, previous VBAC, reason for prior cesarean, and race and ethnicity (26,
27, 36).

VBAC calculators have been criticized for their use of race and the resulting disparities in
TOLAC recommendation rates across racial and ethnic groups (61, 63). The Grobman calculator
produces systematically higher VBAC success probabilities for White women than for Black or
Hispanic women, consistent with studies showing that Black andHispanic women are less likely to

512 Coots et al.
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achieve successful VBAC than areWhite women (43). These racial disparities in estimated VBAC
success rates likely exist because, conditional on other covariates, race and ethnicity capture a mix
of unobserved clinical and nonclinical factors, such as income, education, or health care access.

Researchers have hypothesized that using race-aware VBAC calculators, such as the Grobman
calculator, led to differences in how women of different racial and ethnic groups were counseled
by their doctors to attempt TOLAC (61, 63). Fairness critiques of VBAC calculators have centered
predominantly on unequal recommendation rates to attempt TOLAC across groups. Akin to the
lung cancer example above, equalizing VBAC recommendation rates may similarly require using
race-specific thresholds on VBAC success probability due to possible differences in risk distribu-
tions across groups. This approach, however, would likely result in doctors not recommending
TOLAC for some women above the proposed threshold and recommending TOLAC for some
women below that threshold—a policy that may impose utility losses for women across all groups.
These utility losses would stem from both women who would have benefited from attempting
TOLAC but were not counseled to do so as well as from women who were inappropriately
recommended TOLAC and suffered avoidable complications during delivery.

Grobman et al. (28, 29) have since developed a race-unaware VBAC calculator, which exhibits
comparable overall accuracy to the previous race-aware version, though the authors did not report
accuracy or recommendation rates across racial and ethnic groups (6, 28, 29). As researchers con-
tinue to evaluate the fairness of VBAC calculators and other decision aids, we believe they should
move away from scrutinizing differential recommendation rates across groups, an approach that
fundamentally ignores potential differences in underlying risk distributions and which may result
in utility losses for members of all groups.

3.1.2. Cardiovascular disease. Clinical algorithms are commonly used to estimate cardiovas-
cular risks, but they have been criticized for explicitly considering race, exhibiting unequal decision
rates across groups, and being impacted by label bias. Cardiovascular disease encompasses a broad
range of conditions and events such as coronary heart disease (CHD), coronary heart failure
(CHF), heart attack, and stroke. To reduce cardiovascular disease (CVD)-related morbidity and
mortality, clinicians have long prescribed statins, a class of cholesterol-lowering drugs, to prevent
CVD events. Risk calculators for CVD were developed to help physicians determine when to
recommend statins as a prophylactic.

The Framingham Risk Score (FRS), a race-unaware model trained to predict incidence of
CHD, was among the first such risk estimation algorithms (65). Studies found that the FRS per-
formed reasonably well at predicting CHD events in Black individuals, but concerns emerged over
the limited scope of the FRS in predicting only CHD and not other CVD events, such as CHF
(16), especially because Black individuals exhibited higher rates of CHF than did other racial and
ethnic groups (3, 5). Racial and ethnic differences in CHF incidence rates may lead to label bias
when CHD events are used as a proxy for general cardiovascular risks. To address this concern,
researchers subsequently developed an expanded (but still race-unaware) CVD risk model that
additionally predicted the risk of stroke, peripheral artery disease, and heart failure (17).

Persistent racial and ethnic disparities in incidence rates across these events motivated the
development of a race-aware CVD model: the pooled cohort equations (PCE), also known as the
American College of Cardiology/American Heart Association (ACC/AHA) risk calculator (25).
The PCE outperformed other risk scores in predicting initial atherosclerotic CVD events among
Black individuals as well as others (24, 25). However, like earlier risk models, the PCE failed to
include CHF in its set of considered events, again raising concerns of label bias (7). In response,
the AHA released the Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations
for predicting the risk of CVD and CVD subtypes, including CHF (34). Notably, the PREVENT

www.annualreviews.org • Racial Bias in Health Algorithms 513
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equations are also race-unaware, due to a previous decision to exclude race as a predictor (33). The
model instead includes a zip code–level social deprivation index, which helps account for CVD
risk factors that are likely correlated with race and ethnicity (33).

The authors of PREVENT report that the equations are suitably calibrated for Black indi-
viduals, even without including race or ethnicity, although some have questioned the decision to
exclude race and ethnicity from the model. Diao et al. (19) characterized the expected changes in
statin and antihypertensive therapy eligibility from the switch to the race-unaware PREVENT
equations and found that their use would decrease eligibility for statin and antihypertensive ther-
apy for ∼17 million US adults and that these changes would affect a greater proportion of Black
adults thanWhite adults.However, the PREVENT equations may yield more clinically appropri-
ate decisions, as the PCE overestimate CVD risks for members of all racial and ethnic groups—a
pattern that researchers have attributed to changes in the prevalence of risk factors over time
(such as smoking) and to advances in care and prevention (33, 44). Furthermore, those whose treat-
ment recommendations change would likely have cardiovascular risks near the decision threshold,
meaning they might not have benefited substantially from treatment (14).Without explicitly con-
sidering utility (e.g., in terms of quality-adjusted life-years), fully assessing the impact of excluding
race and ethnicity from the model is a challenge.

While PREVENT excludes race and ethnicity, other cardiovascular risk models are still race-
aware, such as the AHA Get with the Guidelines–Heart Failure Risk Score, drawing debate. That
score informs triage decisions on whether to admit patients to intensive and specialty care, which
are often limited resources in many hospitals (57). The model was designed to predict the risk of
in-hospital mortality using data from a cohort of patients hospitalized with heart failure (52). In
the training data, in-hospital mortality was lower for Black patients, counter to expectations (52).
One possible explanation for this pattern relates to racial disparities in access to cardiology care.
Past work has found that one of the strongest predictors of admission to the cardiology service is
whether a patient was previously seen by an outpatient cardiologist at the hospital—and there were
significant racial and ethnic disparities in the proportion of patients who had seen a cardiologist
within the past year (21, 22). Because of those disparities, Black patients admitted to intensive care
might have had better access to health care and lower risk of mortality as a result.

Due to the lower estimated risks for Black patients, researchers have raised concerns that the
AHA Get with the Guidelines–Heart Failure Risk Score may misdirect intensive care away from
Black patients (61). But, as discussed previously, decision rate–based criticisms of model fairness
ignore potential differences in risk across groups. It may be the case that non-Black patients face
higher risks in this setting and would be better served by the additional care. We would caution,
however, against using this risk score in settings where the patient population differs substantially
from the population used to train the score, especially if those differences are correlated with race
or ethnicity. For example, in safety net hospitals, the score might underpredict mortality risk for
Black individuals because those patients might have higher risks than the relatively healthy Black
individuals in the training data.

3.2. Resource Allocation

We now turn to algorithms used for allocating healthcare resources, a context where the use
of algorithms has raised concerns and ethical questions about how these resources are dis-
tributed, particularly across different racial and ethnic groups. Specifically,we discuss two resource
allocation algorithms used in nephrology and care management.

3.2.1. Kidney transplants. Like algorithms for cardiovascular disease, those for kidney disease
are both widespread and controversial, having been criticized for using race and for exhibiting

514 Coots et al.
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unequal decision rates across groups (61). In the United States, resources for kidney transplan-
tation are highly constrained. In 2021, the average wait time for a deceased donor kidney was
five years, and more than half of listed transplant candidates were expected to die or be removed
from the list before receiving a transplant (64). To make the best use of the constrained supply of
donor kidneys, researchers and clinicians have turned to algorithms to estimate a patient’s need
for a transplant. Patients are typically recommended for transplants based on estimates of their
kidney function, as measured by their glomerular filtration rate (GFR). Given challenges with
measuring GFR directly, GFR has traditionally been estimated (eGFR) using an algorithm based
on factors such as age, sex, race, body size (usually weight or surface area), and serum creatinine
(13, 59). In addition to resource-constrained kidney allocation, eGFR equations have also been
used to make non-resource-constrained chronic kidney disease diagnoses and recommendations
for drug treatments or other therapies (20).

Early eGFR equations—such as the Modification of Diet in Renal Disease (MDRD) study
equation and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation—
used race to estimate GFR (39–41). All else being equal, these equations estimated higher GFR
for Black individuals, meaning better kidney function. Race-aware eGFR equations drew con-
cerns that they made Black patients appear healthier than patients were in reality (61). As a result,
many hospitals began using ad hoc race-unaware estimates of kidney function by reporting the
White/other eGFR prediction for all patients (20). This strategy was found to slightly increase
chronic kidney disease diagnoses among Black adults (20).

This critique of race-aware eGFR equations and the corresponding policy responsemirror calls
to equalize decision rates across groups.However, as discussed above, equalizing decision rates fails
to allow for group differences, and it risks harming members of all groups. Indeed, race-unaware
eGFR values typically underestimate GFR for Black individuals (30); the race adjustment in the
original equations was included precisely to ensure that estimates were calibrated across groups.
Consequently, the race-unaware estimates make Black patients appear less healthy than they likely
are in reality. That pattern may have led to inappropriate diagnoses, potentially resulting in net
harm to Black patients. Researchers have since revised the CKD-EPI equation to replace race
with cystatin C as a predictor of eGFR, leading to race-unaware estimates that are approximately
calibrated (30).

Race-aware eGFR equations have been similarly criticized for deprioritizing Black patients
for kidney transplantation and specialist care (61) because they estimate higher kidney function
for Black individuals compared with otherwise similar White individuals. However, as discussed
above, the race-aware equations produce largely accurate estimates of GFR for both Black and
non-Black patients. Policy makers may well prefer to enforce some degree of parity in kidney
allocation rates, even if that means prioritizing a healthier Black patient over a less healthy White
patient. But we believe that these difficult trade-offs should be confronted directly (12). Seeking
to increase Black individuals’ eligibility for kidney transplants by using an eGFR equation that
underestimates these patients’ kidney function risks other adverse consequences in the form of
overtreatment.

3.2.2. Health care costs as a proxy of need. Health care providers in the United States offer
specialty caremanagement programs to improve the care of high-risk patients with complex health
needs. These programs aim to help individuals better manage their health by offering additional
support from teams of dedicated nurses, social workers, and community health workers.However,
these programs are expensive, and health care systems consequently use algorithms to identify
patients for whom the benefits justify the additional costs (4). A common strategy is to predict
patients’ future medical expenses and then direct specialty care management to those expected to
incur the largest costs (49).

www.annualreviews.org • Racial Bias in Health Algorithms 515



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
71

.2
32

.1
7.

17
7 

O
n:

 W
ed

, 0
9 

A
pr

 2
02

5 
06

:2
4:

56

PU46_Art26_Parikh ARjats.cls March 17, 2025 8:44

However, past work has demonstrated that algorithms trained to predict health care costs can
fail to allocate resources to high-need racial minorities. Obermeyer et al. (49) evaluated the fair-
ness of a commercial algorithm widely used by health care systems to guide patient referrals to
specialty care programs.The algorithmwas trained to predict future costs—as a proxy for complex
health care needs—based on insurance claims (e.g., diagnoses, procedures, medications) made by
an individual in the prior year. The researchers found that the algorithm’s generated risk scores
were well-calibrated across race groups for predicting health care costs. Conditional on risk score,
both Black and White individuals had approximately the same costs in the following year. How-
ever, the researchers found that the algorithm was poorly calibrated for predicting realized health.
Conditional on risk score, Black patients had significantly more illness burden than didWhite pa-
tients. For example, at the 97th percentile of risk—the threshold for allocating resources—Black
patients had 26% more chronic illnesses than did White patients. Due to this miscalibration,
resources were diverted away from high-need Black patients to healthier White patients.

This example illustrates the problem of label bias. Health care costs are a poor proxy of health
care needs, given the disparities in health care access and Medicaid enrollment that are correlated
with race. Past work has shown that, conditional on need, health care spending is lower for Black
individuals than forWhite individuals (48). Consequently, accurate prediction of health care costs
necessarily leads to racially biased allocation of health care resources. Obermeyer et al. (49) esti-
mated that changing the target of prediction to an index variable that incorporates health alongside
cost prediction would lead to more resources being allocated to Black patients. This result sug-
gests that algorithmic label bias, at least in some circumstances, is both fixable and preventable by
thoughtfully selecting prediction targets.

4. TOWARD CONSEQUENTIALIST ALGORITHM DESIGN

The algorithm case studies in the previous sections reveal problems with popular approaches to
fairness, which often fail to consider the impact of decisions. These issues highlight the need for
a design approach that foregrounds the consequences of an algorithm’s use—a challenge we take
on here. To guide our discussion, we consider risk models for type 2 diabetes. Researchers have
proposed using race-based models for estimating diabetes risk to address known racial disparities
in diabetes diagnoses (1). Current guidelines advise using a 1.5% threshold on estimated risk for
recommending follow-up screening in the form of a blood test (1). Diabetes screening is not a
resource-constrained practice, so, in line with our discussion above, we do not evaluate potential
differences in decision rates (or error rates) across groups, as they tell us little about the fairness of
an algorithm. Rather, we address the other two fairness concerns considered in this article: label
bias and the inclusion (or exclusion) of race and ethnicity. Using a consequentialist framework, we
show how to arbitrate between race-aware and race-unaware risk models, following Coots et al.
(14).

For our analysis, we use data from the National Health and Nutrition Examination Survey
(NHANES) (four cycles from 2011 to 2018) (9). We restricted our sample to ∼18,000 patients
who were not pregnant, were 18–70 years old, and had a BMI between 18.5 kg/m2 and 50.0 kg/m2.
Using this data, we trained two linear diabetes risk models based on age and BMI; these models
differed only in their inclusion of race and ethnicity as a predictive variable. This example is for
illustrative purposes only, and we caution against using these models to guide clinical decisions.

4.1. Selecting Appropriate Prediction Targets

When designing or evaluating a model, investigators must scrutinize the prediction target for
label bias. Researchers should be careful to consider the ways in which the proposed label may
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mismeasure the true outcome through systemic mechanisms of inequality, such as inequitable
health care access. In our diabetes example, the label used to train the risk models was constructed
by combining the results of a blood test administered by the NHANES with the response to a
question on whether the respondent had ever been diagnosed with diabetes by a doctor; therefore,
the label likely accurately captures disease status, the true outcome of interest. If, however, our
label were constructed only using the individual’s response to the diagnosis question, our diabetes
risk models would more closely predict diabetes diagnoses, as opposed to diabetes incidence. That
misalignment between label and outcome could result in underestimating diabetes risk in groups
that have less access to health care.

4.2. Foregrounding Utility

One of the major shortcomings of common algorithmic fairness arguments is that they do not
consider individual utilities. In particular, many have advocated for using specific risk algorithms
on the grounds that they increase decision rates (often for screening or treatment) for racial and
ethnic minority groups (37). Yet these arguments often do not consider expected changes in utility
from these changed decisions, and they generally overlook the possibility that increasing decision
rates can lead to utility losses for members of all groups, as we demonstrated with our lung cancer
example. A consequentialist approach to algorithm design instead foregrounds individual utilities
in fairness evaluations.

We first examine the accuracy of race-unaware risk models. In Figure 2a, we visualize the
estimated risk from a race-unawaremodel for diabetes against the observed rates of diabetes across
racial and ethnic groups. This plot reveals discrepancies between the model predictions and true
diabetes incidence for all groups. This miscalibration would consequently lead the model to fail
to recommend screening for some high-risk Asian individuals—whose risk is underestimated by
the model—and inappropriately recommend screening for some low-risk White individuals—
whose risk is overestimated by the model. In both cases, the miscalibration would impose net
costs on members of both groups from suboptimal screening recommendations. Past work has
suggested using race-aware risk models to correct miscalibration across groups and obtain more
accurate predictions (1). However, that work has stopped short of considering not just differences
in accuracy, but differences in utility between race-aware and race-unaware models.

To compare the utility of race-aware versus race-unaware models, we follow Coots et al. (14)
and first construct a simplified utility function to aid our comparison of risk models. Our utility
function assumes a constant cost of screening and a constant benefit of correctly detecting dia-
betes. [For further detail on the utility function, see Coots et al. (14).] Applying this utility function
to the decisions produced under race-aware and race-unaware models, we find that the relative
gain in utility from using a race-aware model is smaller than expected in light of the substantial
improvements in accuracy offered by the race-aware model over the race-unaware model. Rela-
tive to a baseline policy of no screening, we estimate that the race-aware model would improve
overall utility by 0.2% over the race-unaware model. Figure 2c shows that gains are similarly
small across race groups. Our simplified utility function is for illustrative purposes only, to esti-
mate themagnitude of the expected benefits, and is not intended to capture all the complex clinical
considerations.

The modest utility gains stem from two factors. First, the vast majority of individuals (94%)
would receive the same screening recommendation under both the race-aware and race-unaware
models. In Figure 2b, we plot the race-aware risk estimate for an individual against their race-
unaware risk estimate. The dots in the shaded regions of the plot correspond to individuals for
whom both models produce the same recommendation. In Figure 2d, we show the fraction of

www.annualreviews.org • Racial Bias in Health Algorithms 517



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
71

.2
32

.1
7.

17
7 

O
n:

 W
ed

, 0
9 

A
pr

 2
02

5 
06

:2
4:

56

PU46_Art26_Parikh ARjats.cls March 17, 2025 8:44

0.00 0.25 0.50 0.75 1.00

Relative utility gain of race-aware predictions
over race-unaware predictions (%)

G
ro

up

0 25 50 75 100

Fraction of individuals with changed decisions (%)

0

4

8

12

16

20

24

0 2 4 6 8 10
Race-unaware risk (%)

O
bs

er
ve

d 
di

ab
et

es
 ra

te
 (%

)

0

4

8

12

16

20

24

0 2 4 6 8 10
Race-unaware risk (%)

Ra
ce

−a
w

ar
e 

ri
sk

 (%
)

Asian

Black

Hispanic

White

a b

c d

Figure 2

A consequentialist approach to the design of a diabetes risk prediction model. In line with analyses in Coots et al. (14), (a) estimated risk
from a race-unaware model for diabetes against the observed rates of diabetes across racial and ethnic groups. Panel adapted from
Chohlas-Wood et al. (11). (b) Scatter plot showing race-unaware risk plotted against race-aware risk for each individual in the data.
Individuals in the shaded regions receive the same recommendation under both models. In panels a and b, the vertical lines correspond
to the recommended diabetes risk threshold of 1.5%, above which the typical patient can expect to benefit from screening. The
diagonal dashed lines represent hypothetical risk scores that are perfectly calibrated to empirical diabetes rates. (c) The relative gain in
utility from the use of race-aware predictions to make screening recommendations across racial and ethnic groups. The vertical line
denotes the average relative gain experienced across the entire population. (d) The fraction of individuals with different
recommendations under race-unaware and race-aware models. The vertical line denotes the fraction of individuals with changed
decisions across the entire population.

individuals with different decisions under each model by race and ethnicity. The second factor
driving this result is that those individuals whose decisions do change are typically close to the de-
cision threshold and therefore accrue relatively small utility gains from using a race-aware model.
In short, the small subset of individuals with changed decisions should be largely ambivalent to
being screened.

The race-unaware model is starkly miscalibrated but results in smaller-than-expected utility
losses relative to the race-aware model. By foregrounding utility, our analysis helps clarify the
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expected benefits from using a race-aware model. However, the costs of using race—from risk
of stigmatization or reinforcing pernicious attitudes on biological determinism, for example—
remain an open concern. Ultimately, these costs must be weighed against the estimated benefits
in selecting the most appropriate model for decision-making.

5. CONCLUSION

As algorithms are increasingly used to guide health care decisions, discussions around algorith-
mic fairness have come to the forefront, with racial equity being a particular focus of attention.
By critically examining contemporary debates, we have argued for reframing what it means for
an algorithm to be fair. Past fairness approaches—grounded in narrow summary statistics such as
decision rates and error rates—fail to anticipate the outcomes produced by algorithms, thereby
risking unintended harm, including to those in racial and ethnic minority groups. With a con-
sequentialist approach to algorithm design, we advocate for explicitly considering the utility of
decisions produced by candidate algorithms to better understand the impact of design choices.
This is no easy task. A consequentialist approach requires defining an appropriate utility func-
tion, a complex assignment that may also require aligning differing values across stakeholders.
This challenge has led some scholars to critique consequentialist approaches to policy (54). But
we believe that in many cases of practical importance, it is both feasible and useful to articulate
one’s values, estimate the impacts of different algorithms, and confront the resulting trade-offs.
We hope that our discussion helps researchers, clinicians, and policy makers better understand the
common threads underlying ongoing debates and illuminates a path forward for designing more
equitable health care algorithms.
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