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ABSTRACT
Decision makers can benefit from the subjective judgment
of experts. For example, estimates of disease prevalence are
quite valuable, yet can be difficult to measure objectively.
Useful features of mechanisms for aggregating expert opin-
ions include the ability to: (1) incentivize participants to be
truthful; (2) adjust for the fact that some experts are better
informed than others; and (3) circumvent the need for objec-
tive, “ground truth” observations. Subsets of these proper-
ties are attainable by previous elicitation methods, including
proper scoring rules, prediction markets, and the Bayesian
truth serum. Our mechanism of collective revelation, how-
ever, is the first to simultaneously achieve all three. Fur-
thermore, we introduce a general technique for constructing
budget-balanced mechanisms—where no net payments are
made to participants—that applies both to collective reve-
lation and to past peer-prediction methods.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Design, Economics

Keywords
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1. INTRODUCTION
Many predictions, for example regarding the effects of eco-

nomic policy, are fundamentally subjective in nature. In
such cases, a decision maker may seek to elicit and aggre-
gate the opinions of multiple experts. Ideally, the decision
maker would like a mechanism that is: (1) incentive compat-
ible, or rewards participants to be truthful; (2) information
weighted, or adjusts for the fact that some experts are bet-
ter informed than others; (3) self-verifying, or works without
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the need for objective, “ground truth” observations; and (4)
budget balanced, or makes no net transfers to agents. A
variety of techniques—including proper scoring rules, pre-
diction markets, and peer-prediction methods—have been
developed to address each of these four features. Previ-
ous mechanisms, however, have not simultaneously satisfied
even the first three properties. In this paper we introduce
collective revelation, an elicitation and aggregation mech-
anism that is incentive compatible, information weighted,
self-verifying, and budget balanced.

By information (or confidence) weighted we informally
mean that the predictions of agents with more private ev-
idence have greater influence on the final, aggregate pre-
diction. Collective revelation is constructed to elicit both
an agent’s prediction and its confidence, as quantified by
its willingness to update its beliefs in light of hypotheti-
cal new evidence. To circumvent the need for ground truth
observations, the agents’ own private evidence is used as
a proxy for public information. Ultimately, the mechanism
constructs an aggregate prediction equivalent to what would
have resulted had all agents collectively revealed the entirety
of their private information.

In the remainder of the Introduction we describe exist-
ing prediction mechanisms and their theoretical guarantees.
In Section 2 we formally specify the problem and outline
our key assumptions. The basic mechanism is developed
in Section 3.1 and shown to satisfy properties (1), (2) and
(3) above. Section 3.2 describes a general technique for
constructing budget-balanced mechanisms, and applies it
to collective revelation. We conclude in Section 4 by dis-
cussing the interpretations, implications, and limitations of
this work. Some results and technical details are relegated
to the Appendix.

Background and Related Work
Table 1 summarizes existing prediction techniques and their
properties.

Proper scoring rules [1, 7, 15, 22] assess an agent’s fore-
cast of an uncertain outcome against the actual observed
outcome, with rewards designed so that agents are incen-
tivized to be truthful. For example, for any random variable
X and constant C ∈ R, the Brier scoring rule rewards an
agent’s prediction r of EX according to

u(X, r) = C − (r −X)2.

If F is the agent’s subjective distribution, then

arg max
r

EF [u(X, r)] = EF X.
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Incentive Compatible Information Weighted Self-Verifying

Proper Scoring Rules •
Prediction Markets ◦ •
Peer Prediction ◦ •
Delphi Method ◦ •
Competitive Forecasting ◦ •
Polls •
Collective Revelation ◦ • •

Table 1: A comparison of properties for common prediction mechanisms. Solid bullets indicate properties
that are rigorously satisfied, and circles indicate those that are approximately satisfied. Collective revelation
is Bayes-Nash—as opposed to dominant strategy—incentive compatible; hence the open circle.

Hence, a risk-neutral agent—one who seeks to maximize its
expected reward—would rationally report its subjective ex-
pectation. Scoring rules have been extensively studied for
nearly sixty years, both theoretically [27] and experimen-
tally [19, 26], and have been applied to forecasting problems
in several disciplines, including meteorology [18], economics
[20], and medicine [23].

While scoring rules induce rational agents to act truth-
fully, they rely on observing the outcome X (i.e., they rely on
an objective, ground truth). Recent work [10, 13, 17, 21] has
shown that the need for external validation can be obviated
by meta predictions. For example, the Bayesian truth serum
[21] asks agents to report both their own prediction and
their prediction of other agents’ predictions. With the ap-
propriate reward structure, this framework leads to truthful
equilibria, even for obviously subjective assessments, such
as, Do you prefer red or white wine?. To derive this type of
result, it is assumed that agents’ personal beliefs are deter-
mined by independent random events (e.g., ‘heads’ I prefer
red wine, ‘tails’ I prefer white wine) and that the distribu-
tion of these random events is common knowledge among
the agents, though it need not be known by the mecha-
nism. Peer-prediction mechanisms are incentive compatible
and self-verifying.1 Prior work along these lines, however,
has implicitly assumed each individual has the same amount
of private information (e.g., one coin flip), and hence has
neglected an important practical aspect of aggregating pre-
dictions.

Prediction markets encourage truthful behavior [2] and
automatically aggregate predictions from agents with di-
verse information. Consider, for example, prediction mar-
kets for U.S. presidential elections. In this case, agents buy
and sell assets tied to an eventual Democratic or Repub-
lican win. Each share pays $1 if the corresponding event
occurs, and is worthless if the event does not occur. Ac-
cordingly, the spot price for shares can be interpreted as
the market-aggregated estimate of the likelihood of that
event, and participants are encouraged to trade when they
believe the market does not reflect their subjective probabil-
ity estimates. Although prediction markets are information
weighted, and in some cases incentive compatible [2], they
rely on objective outcomes to determine the ultimate value
of assets.2 A graphical prediction mechanism called compet-

1By our results in Section 3.2, these mechanisms can be
made budget balanced as well.
2The need for external validation is partially alleviated for

itive forecasting3 elicits confidence intervals on predictions,
thereby facilitating information weighting. Like prediction
markets, competitive forecasting rewards accuracy, though
is not rigorously incentive compatible and relies on bench-
marking against objective measurements.

Above we have focused on mechanisms that directly re-
ward accuracy, incentivizing truthfulness. There are, how-
ever, several effective elicitation and prediction techniques
that do not have this property. Simple polls, for example,
do surprisingly well at aggregating opinions [24], and the
Delphi method generates consensus predictions from experts
essentially through a process of structured discussion [3].

2. THE SETTING
To have a concrete problem in mind, suppose we are trying

to estimate the proportion p of students at the University
of Chicago who are male—the original elicitation example
used by Winkler in 1967 [25]. Specifically, if X indicates the
gender of a randomly selected student, we seek an aggre-
gate estimate of agents’ subjective expectation of X. More
generally, we are interested in aggregate expectations for ar-
bitrary parametric random variables.

We make the following structural assumptions, to be spec-
ified in more detail in Section 3.

1. Common prior. Agents have a common prior subjec-
tive belief on the parameters describing X, and this
common prior is also known to the administrator of
the mechanism. For example, X may be Bernoulli(p),
and agents may have a Beta(α, β) prior on p, with α
and β common knowledge.

2. Independent private evidence. Each agent i privately
observes ni ≥ 1 independent realizations of the ran-
dom variable X: (xi,1, . . . , xi,ni). Observations are in-

conditional markets, in which transactions are voided if cer-
tain stated pre-conditions are not met. For example, a con-
ditional market can elicit the probability of recession condi-
tional on interest rates being lowered within the next three
months. If interest rates are not ultimately lowered, then
the market has generated a probability estimate for a purely
hypothetical—and not externally verifiable—event. Still,
these markets effectively function because of the threat of
external verification (i.e., they would not function if it were
common knowledge that the pre-conditions would never be
satisfied).
3http://us.newsfutures.com/home/
competitiveForecasting.html
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Figure 1: The difficulties of dependent information.
Even if Alice and Bob each truthfully report their
observations, it is still impossible to determine the
true state of the world.

dependent across agents as well. Both the outcome
vector and the number of trials ni are private.

3. Rationality. Agents update their beliefs via Bayes’
rule. In particular, suppose θ ∈ Θ parameterizes the
distribution of X, f(θ) is the density of the common
prior, and p(x | θ) is the density of X given parameter
θ. Then the posterior density of agent i after observing
independent evidence xi,1, . . . , xi,ni is given by

f(θ | xi,1, . . . , xi,ni) =
f(θ)

Qni
j=1 p(xi,j | θ)

R
f(ξ)

Qni
j=1 p(xi,j | ξ)dξ

and the agent’s corresponding posterior expectation of
X is given by

Ef(θ|xi,1,...,xi,ni
)[X] =

Z

Θ

Z

R
x p(x | θ) f(θ | xi,1, . . . , xi,ni) dx dθ.

4. Risk neutrality. Agents act to maximize their expected
payoff.

The assumptions of rationality and risk-neutrality are stan-
dard in economic and game-theoretic work [14]. The require-
ment of a common prior, while stronger, is still relatively
commonplace. Moreover, when agents’ beliefs are largely
based on their private evidence, it is often reasonable to as-
sume a weakly informative prior [5]. By far the most strin-
gent of our assumptions is the requirement of independent
evidence. Without this assumption, however, it seems diffi-
cult to model how players would reason about other agents’
private information, a key ingredient in peer-prediction ap-
proaches, and one that facilitates self-verification. Perhaps
for this reason, previous results along these lines have also
incorporated the independence assumption [10, 21].

Apart from the question of elicitation, dependent evidence
also complicates the problem of aggregation. Consider the
following simple example, depicted graphically in Figure 1.
Three coins are flipped, and Alice and Bob each observe
two of them. Even if Alice and Bob each truthfully report
observing one ‘heads’ and one ‘tails’, it is still impossible to
determine if the true state of the world is two ‘heads’ and
one ‘tails’, or two ‘tails’ and one ‘heads’.

Our four structural assumptions are idealizations. Nonethe-
less, they are common idealizations that are difficult to cir-

cumvent and that capture, at the very least, an interesting
special case on which to build intuition.

3. A MECHANISM FOR COLLECTIVE
REVELATION

The best estimate for EX would result if all agents simply
revealed their private evidence; collective revelation gener-
ates precisely this ideal estimate. Moreover, the mechanism
relies only on the privately observed values of X, not on any
publicly verifiable observations.

To gain intuition for the mechanism, suppose that the
administrator were able to generate verifiable trials of X.
Using standard techniques (i.e., simple scoring rules), one
could then elicit each agent’s posterior subjective distribu-
tion, updated in accordance with its private information.
Now, given an agent’s updated distribution (and a common
knowledge prior), only certain private information is pos-
sible. In particular, as we show later, this feasible private
information is sufficiently well determined to allow one to
weight estimates by their relative information content, in
turn producing the final, aggregate estimate.

The above sketch, however, required additional, exter-
nally verifiable trials of X, violating the criterion of self-
verification. To circumvent this issue, we instead score agents
against one another’s private information. If a single agent
can be induced to truthfully disclose its private informa-
tion, other agents will then be incentivized to follow suit.
Consequently, there is an equilibrium in which agents are
induced to collectively reveal their private evidence. A tech-
nical hurdle is that we never have direct access to agents’
private evidence, even in equilibrium; nonetheless, we can
infer their private information well enough to induce truth-
ful equilibrium behavior.

The final ingredient in this mechanism is providing a means
by which agents can conveniently describe their subjective
distributions. The incentives are such that they should be
truthful, but we still need a language for agents to convey
their beliefs. Here we incorporate the hypothetical future
sample (HFS) method [25]: Agents state their subjective
expectation of X, and then revise their estimate in light of
new, hypothetical evidence. The precise language used to
convey distributions is not crucial; for concreteness, how-
ever, we state our results in terms of HFS.4 See Garthwaite
et al. [4] for alternative elicitation languages.

Figure 2 outlines the structure of the mechanism. First,
agents report their estimate of EX, and their updated ex-
pectation given hypothetical evidence. From these reports,
the subjective posterior of the agent is reconstructed. From
that posterior, the mechanism infers the agent’s private in-
formation, and also the agent’s prediction of other agents’
private information. Finally, this prediction of other agents’
private information is scored against the inferred private in-
formation of other agents, closing the loop and creating an
equilibrium with truthful initial reports.

While Figure 2 captures the spirit of our argument, the
technical details are sensitive to the precise distribution of
the random variable X. We discuss the case of binary events
(i.e., Bernoulli random variables) below, and the case of

4Agents could convey their subjective distributions by re-
vealing their private evidence directly; for reasons discussed
in Section 4, however, we believe HFS to be a more natural
language.
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normally distributed observations in the Appendix. Sim-
ilar results hold for Poisson and exponentially distributed
outcomes, but the details are not included here.

3.1 The Basic Mechanism
In the following, we make use of some notation and results

common in probability and statistics textbooks [5].
Suppose we attempt to elicit predictions for a binary out-

come (i.e., X ∼ Bernoulli(p)). In this case, a single obser-
vation of X, even if public, is not sufficient to elicit detailed
information regarding an agent’s prior on p.

Lemma 3.1. Suppose X1, . . . , Xn are independent, identi-
cally distributed Bernoulli(p) random variables, and that an
agent has a subjective distribution F (p) over possible val-
ues of p. Then it is possible to elicit the kth moment of
F via a proper scoring rule that pays based on the outcome
(X1, . . . , Xn) if and only if k ≤ n.

Proof. First assume k > n. Let f : Rm × {0, 1}n '→ R
be any function that pays an agent based on a report q ∈
Rm and the outcome (X1, . . . , Xn) ∈ {0, 1}n. Then for any
report q, the agent’s subjective expected payoff is

Ef(q, ·) =
X

o∈{0,1}n

f(q, o)P(o)

=
X

o∈{0,1}n

f(q, o)

Z 1

0

ξ|o|(1− ξ)n−|o| dF (ξ)

where |o| is the number of 1’s in o. Consequently, denot-
ing the ith moment of F by Mi =

R 1

0
ξi dF (ξ), there is a

function g such that Ef(q, ·) = g(q, M1, . . . , Mn). In partic-
ular, arg maxq Ef(q, ·) does not in general depend on the kth

moment of F for k > n, establishing the necessity of k ≤ n.
Now consider k ≤ n, and define

fk(q, X1, . . . , Xn) = −
"
q − 1`

n
k

´
 Pn

i=1 Xi

k

!#2

.

It is clear that

arg max
q

Efk(q, ·) =
1`
n
k

´E
 Pn

i=1 Xi

k

!
.

Furthermore,

E
 Pn

i=1 Xi

k

!
= E

2

4
X

1≤i1<i2<···<ik≤n

Xi1 · · ·Xik

3

5

=

 
n
k

!
E(X1 · · ·Xk) =

 
n
k

!Z 1

0

ξk dF (ξ).

Consequently, arg maxq Efk(q, ·) = Mk and the result fol-
lows.

Lemma 3.1 shows, in particular, that with a single Bernoulli
observation, a scoring rule can only elicit the mean µ(F ) of
an agent’s subjective distribution F (p). Since the parameter
p is itself the expectation of a Bernoulli(p) random variable,
µ(F ) is also the agent’s subjective expectation of X. That
is,

EF X =

Z 1

0

ξ dF (ξ) = µ(F ).

In short, scoring against a single Bernoulli observation re-
veals only an agent’s expectation, and not the uncertainty
in its prediction as quantified by the variance of F . This
uncertainty, however, is a necessary ingredient for weighting
predictions, and so Lemma 3.1 shows that any incentive-
compatible and information-weighted mechanism for aggre-
gating predictions for Bernoulli outcomes must at least im-
plicitly score agents against multiple observations.

Now we begin to formally describe the collective revela-
tion mechanism for binary outcomes. Following the outline
in Figure 2, we begin by deducing the agent’s subjective
distribution based on estimates derived from hypothetical
future samples.

Lemma 3.2. Let Y be a Bernoulli(p) random variable,
and suppose F (p) ∼ Beta(α, β) is a prior on p. Fix n, s ∈ Z
such that n > 0 and 0 ≤ s ≤ n, and let F (p | s, n) be
the updated posterior distribution on p given s successes are
observed in n hypothetical trials. Then gs,n(α, β) defined by

gs,n(α, β) =
`
EF (p)Y, EF (p|s,n)Y

´

is a bijection from R+ × R+ to

Ω = {(a, b) | 0 < a < b < s/n} ∪ {(a, b) | s/n < b < a < 1}

and

g−1
s,n(a, b) =

„
(nb− s)a

a− b
,

(nb− s)(1− a)
a− b

«
.

Proof. First note that the beta distribution is conju-
gate to the binomial distribution, and in particular, F (p |
s, n) ∼ Beta(α + s, β + n− s). Furthermore, since E[Y | p ∼
Beta(α, β)] = α/(α + β), we have

gs,n(α, β) =

„
α

α + β
,

α + s
α + β + n

«
.

Consequently, for fixed a, b we need to solve the system of
equations

a =
α

α + β
b =

α + s
α + β + n

for α, β. The first equation yields α = βa/(1 − a). Substi-
tuting into the second, we get

β = (nb− s)(1− a)/(a− b).

Using this expression to solve for α, we have the equation
for the g−1

s,n.
Now note that (a, b) ∈ Ω if and only if 0 < a < 1 and

(nb − s)/(a − b) > 0. Consequently, g−1
s,n(Ω) ⊆ R+ × R+.

Furthermore, for (α, β) ∈ R+ × R+ and gs,n(α, β) = (a, b),
we clearly have 0 < a < 1. So, if (a, b) +∈ Ω, then (nb −
s)/(a− b) < 0, in which case (α, β) = g−1

s,n(a, b) +∈ R+ × R+,
leading to a contradiction. Hence, gs,n is a bijection between
the stated sets.

Next we derive a one-to-one correspondence between an
agent’s subjective beta distribution and predictions regard-
ing other agents’ private information.

Lemma 3.3. For n ≥ 2, suppose X1, . . . , Xn are indepen-
dent Bernoulli(p) random variables, and F ∼ Beta(α, β) is
a prior on p. Let S =

Pn
i=1 Xi. Then hn(α, β) defined by

hn(α, β) =

 
EF (p)

»
S
n

–
, EF (p)

"
1`
n
2

´
 

S
2

!#!
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Figure 2: Inducing the collective revelation of private information.

is a bijection from R+ × R+ to

Ω = {(a, b) : 0 < b < a <
√

b < 1}

and

h−1
n (a, b) =

„
a(a− b)
b− a2

,
(1− a)(a− b)

b− a2

«
.

Proof. First, observe that

EF (p) [S/n] = EF (p) [X1] =

Z 1

0

ξ dF (ξ) =
α

α + β

and

EF (p)

"
1`
n
2

´
 

S
2

!#
=

1`
n
2

´EF (p)

"
X

i<j

XiXj

#

= EF (p)[X1X2] =

Z 1

0

ξ2 dF (ξ)

=
α(α + 1)

(α + β)(α + β + 1)
.

Consequently,

hn(α, β) =

„
α

α + β
,

α(α + 1)
(α + β)(α + β + 1)

«
. (3.1)

To compute h−1
n , we need to solve for α, β in

a =
α

α + β
b =

α(α + 1)
(α + β)(α + β + 1)

.

The first equation gives α = aβ/(1 − a). Substituting into
the second equation, we find β = (x − 1)(y − x)/(y − x2).
Using this latter expression, we now solve for α, yielding the
result.

For (α, β) ∈ R+×R+, let h(α, β) = (a, b). From (3.1), it is
clear that 0 < b < a and that

√
b < 1. To show a2 < b, note

that for x, y > 0, x/y < (x + 1)/(y + 1) if and only if x < y.
Consequently, we have that Image(hn) ⊆ Ω. Furthermore,
for (a, b) ∈ Ω, it is clear that h−1

n ⊆ R+ × R+. Hence, hn is
a bijection on the stated sets.

We are ready to state our main result for predictions about
binary outcomes.

Theorem 3.1. Consider the setting of the Bayesian game
in Section 2 with N ≥ 3 players, X ∼ Bernoulli(p), and a
Beta(α0, β0) common prior on the parameter p. Let Fi(p)
denote the posterior distribution of agent i after updating
according to its private information. Fix n, s ∈ Z such that

n > 0 and 0 ≤ s ≤ n. Suppose each agent i plays an action
(ai, bi) ∈ Ω where

Ω = {(a, b) | 0 < a < b < s/n} ∪ {(a, b) | s/n < b < a < 1}.

Using the notation of Lemmas 3.2 and 3.3, define

s−i =
X

j $=i

ˆ
P1 ◦ g−1

s,n(aj , bj)− α0

˜

n−i =
X

j $=i

ˆ
P1 ◦ g−1

s,n(aj , bj)− α0

˜
+
ˆ
P2 ◦ g−1

s,n(aj , bj)− β0

˜

(3.2)

where Pk is projection onto the kth component. For arbitrary
constants Ci, set the reward to the ith agent to be

Ci −
»
P1 ◦ hn−i ◦ g−1

s,n(ai, bi)−
s−i

n−i

–2

−
"
P2 ◦ hn−i ◦ g−1

s,n(ai, bi)−
1`

n−i
2

´
 

s−i

2

!#2

. (3.3)

Then

(ai, bi) =
`
EFi(p)X, EFi(p|s,n)X

´
(3.4)

is a strict Nash equilibrium.

Proof. Fix attention on agent i, and suppose that for all
j += i, agent j plays the strategy (3.4). Since the beta distri-
bution is conjugate to the binomial distribution, each agent
has a beta posterior Fj after updating according to their
private information. By Lemma 3.2, g−1

s,n(aj , bj) = (αj , βj)
gives the parameters of Fj . Suppose sj , nj are, respectively,
the number of successes and total number of trials privately
observed by agent j. Then

αj = α0 + sj βj = β0 + nj − sj .

Consequently,

sj = αj − α0 = P1 ◦ g−1
s,n(aj , bj)− α0

and

nj = (βj − β0) + (αj − α0)

=
ˆ
P1 ◦ g−1

s,n(aj , bj)− α0

˜
+
ˆ
P2 ◦ g−1

s,n(aj , bj)− β0

˜
.

In particular, s−i =
P

j $=i sj and n−i =
P

j $=i nj . Lem-
mas 3.2 and 3.3 show that if i plays according to (3.4), then

hn−i ◦ g−1
s,n(ai, bi) =

 
EFi(p)

»
S

n−i

–
, EFi(p)

"
1`

n−i
2

´
 

S
2

!#!
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where S =
Pn−i

k=1 Xk for independent Bernoulli(p) random
variables Xk. Since we are using the Brier proper scoring
rule,5 this strategy maximizes i’s expected reward. More-
over, since hn−i ◦ g−1

s,n is an injection, this is i’s unique best
response. Consequently, strategy (3.4) is a strict Nash equi-
librium.

Theorem 3.1 constructs a game in which agents truthfully
report their subjective expectations of X, and their updated
expectations given hypothetical evidence. To complete the
mechanism, Corollary 3.1 describes how to generate an ag-
gregate, information-weighted prediction from these individ-
ual reports.

Corollary 3.1. Using the notation of Theorem 3.1, sup-
pose agents play the equilibrium strategy (ai, bi) given by
(3.4). For

s̄ =
NX

j=1

ˆ
P1 ◦ g−1

s,n(aj , bj)− α0

˜

n̄ =
NX

j=1

ˆ
P1 ◦ g−1

s,n(aj , bj)− α0

˜
+
ˆ
P2 ◦ g−1

s,n(aj , bj)− β0

˜

define the aggregate, information-weighted prediction p̃ by

p̃ =
α0 + s̄

α0 + β0 + n̄
. (3.5)

Let F (p | {Xi,j}) be the posterior distribution resulting from
the cumulative private evidence of all agents. Then p̃ =
EF X.

Proof. As shown in the proof of Theorem 3.1, s̄, n̄ are,
respectively, the total number of successes and the total
number of trials among all the agents’ private evidence. The
posterior distribution F (p | {Xi,j}) resulting from this cu-
mulative evidence is thus Beta(α0 + s̄, β0 + n̄− s̄), and the
expectation of X under this posterior distribution is pre-
cisely p̃.

Collective revelation essentially induces agents to reveal
all their private information. More precisely, the aggregate
prediction generated by the mechanism is the same predic-
tion that would have resulted had all agents disclosed their
private evidence in its entirety.

3.2 A General Technique for Balancing
Budgets

The basic mechanism, as thus far described, is incentive
compatible, information weighted, and self-verifying. To
achieve budget balance—where no net transfers are made
to agents—we develop a general technique that applies both
to collective revelation and to past peer-prediction mecha-
nisms (e.g., the Bayesian truth serum [21]).

The idea is to reward agents via a shared scoring rule [9,
11, 12]. Suppose there are n agents, and agent i is rewarded
by the scoring rule fi(ri, xi) where ri is the agent’s report
and xi the observation the agent is evaluated against. In its
simplest form, a shared scoring rule is one in which agents

5Any proper scoring rule could be used with minimal alter-
ation.

are paid according to their performance relative to one an-
other:

f̃i(ri, xi) = fi(ri, xi)−
1
n

nX

j=1

fj(rj , xj)

=
n− 1

n
fi(ri, xi)−

1
n

X

j $=i

fj(rj , xj). (3.6)

By subtracting the mean reward under the original scor-
ing rule fj , the new rewards are clearly budget balanced:Pn

i=1 f̃i(ri, xi) = 0.
Ordinarily, the observations xi correspond to an“objective

truth” (e.g., the amount of rain tomorrow, or the winner of
an election). In these cases, it is reasonable to assume that
agent i’s report ri does not affect the original rewards of the
other agents, and specifically, that ri does not affect the sum
in Equation (3.6). Consequently,

arg max
r

f̃i(r, xi) = arg max
r

fi(r, xi)

and in particular, assuming {xi} are“ground-truth”observa-
tions, shared scoring rules preserve incentive compatibility.

In our setting, however, the “observations” xj are deter-
mined precisely by agents’ reports, and a simple application
of shared scoring rules consequently fails. To circumvent
this complication, we effectively decouple scoring (comput-
ing the original rewards fj) from benchmarking (normalizing
rewards to group performance). That is, agent i is rewarded
according to its performance relative to a set of agents Vi,
but that set of agents Vi is chosen so that agent i cannot
affect their scores.

We now formally describe how to balance the budget of a
mechanism that naturally restricts to fewer players. For a
game G with n players, the reward function is not a priori
defined for fewer than the original number of players. A
k-projective family of G is essentially a family of reward
functions that makes sense when applied to k < n players,
but otherwise does not alter the structure of the game.

Definition 3.1. Given a Bayesian game G with n play-
ers, a k-projective family of G is a family of games {ĜV }
such that for each V ⊆ {1, . . . , n} with |V | = k, ĜV is
a Bayesian game restricted to the players V that preserves
(for players in V ) type spaces, action spaces, and players’
beliefs about types. In particular, {ĜV } is determined by a
family of reward functions {ÛV } that specifies the expected
reward for each player in V resulting from any given strategy
profile of those players.

As a simple example of this definition, consider a first-
price sealed-bid auction with n players where types (i.e.,
private valuations) are independent, identically distributed
uniform [0, 1] random variables. Then for any subset of k
players V = {j1, . . . , jk}, define ĜV to be the usual first-
price auction on k players (again with i.i.d. U [0, 1] valua-
tions).

Theorem 3.2. Consider a Bayesian game G on n players
with a (strict) Nash equilibrium q = (q1, . . . , qn). Suppose
{ĜV } is a k-projective family of G such that 2 ≤ k < n/2+1.
Also suppose that for each V = {j1, . . . , jk}, (qj1 , . . . , qjk ) is
a (strict) Nash equilibrium for ĜV . Then for any constant
C ∈ R, there are player rewards Ũi for the n-player game G
such that:
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1. For any strategy profile s,
nX

i=1

Ũi(s) = C.

2. The original equilibrium q is still a (strict) Nash equi-
librium for the modified game (i.e., the game G with
rewards Ũ).

In particular, by setting C = 0, one can alter the rewards so
that the game G is ex-post strongly budget balanced.

Proof. The proof is by construction. For V . i, let Ui

and ÛV,i denote, respectively, the reward functions for player
i in the game G and in the game ĜV . For a strategy profile
s for G, we slightly abuse notation and write ÛV,i(s) for the
reward to player i in the restricted game ĜV . (Technically,
ÛV,i is only defined for strategy profiles of the set of players
V , whereas s is a complete strategy profile for all n players.
However, by ÛV,i(s) we mean to first restrict s to players in
V , and then to compute the reward for player i.)

Define the player sets Vi = {i, i+1, . . . , i+k−1} where the
players wrap around for i+k−1 > n. For example, Vn−1 =
{n − 1, n, 1, . . . , k − 2}. Consider the modified rewards for
G:

Ũi(s) =
C
n

+ UVi,i(s)−
1

k − 1

k−1X

j=1

UVi+j ,i+j(s).

Now, switching the order of summation

nX

i=1

Ũi(s) = C +
nX

i=1

UVi,i(s)−
1

k − 1

k−1X

j=1

nX

i=1

UVi,i(s) = C.

Furthermore, observe that

k−1[

j=1

Vi+j = {i, i + 1, . . . , i + 2(k − 1)}.

Since k < n/2+1, we have 2(k− 1) < n, and so i +∈ Vi+j for
1 ≤ j ≤ k− 1. Consequently, if si is the strategy of player i
and s−i is the strategy profile of all the other players, then

Ũi(si; s−i) =
C
n

+ UVi,i(si; s−i)−
1

k − 1

k−1X

j=1

UVi+j ,i+j(s−i)

= UVi,i(si; s−i) + Ci(s−i)

where Ci() is a function that does not depend on si (i.e.,
Ci() does not depend on player i’s strategy). Since (ri, r−i)
is a Nash equilibrium for ĜVi ,

arg max
si

Ũi(si; r−i) = arg max
si

UVi,i(si; r−i) = ri.

The result now follows.

The assumptions of Theorem 3.2 hold for the basic collec-
tive revelation mechanism of Section 3.1: In equilibrium,
players truthfully report both their expectation of X, and
their updated expectation in light of hypothetical evidence.
Since our Bernoulli collective revelation mechanism requires
at least 3 players, there is a natural k-projective family for
any k ≥ 3. It then follows from the theorem that there is a
budget-balanced extension of Bernoulli collective revelation
for n ≥ 5 players.

A slightly different construction yields a budget-balanced
mechanism for n = 4 players. Informally, the agents are split

into two groups of two, benchmarking each against its own
group but scoring each against the other group. For nor-
mally distributed observations (see the Appendix) the basic
collective revelation mechanism requires only k ≥ 2 play-
ers. Consequently, in that case, Theorem 3.2 shows how to
construct the budget-balanced extension for n ≥ 3 players.

The constant C in Theorem 3.2 can be seen as a subsidy
provided by the mechanism administrator to encourage par-
ticipation. In particular, positive subsidies make it rational
for risk-neutral agents with common priors to compete, cir-
cumventing so-called no-trade theorems [16] that rule out
such behavior in zero-sum games.

4. DISCUSSION
Collective revelation elicits both individual predictions and

optimal aggregate estimates, even when agents hold a pri-
ori unknown amounts of private information. Moreover,
the mechanism can be adapted to several of the most com-
mon classes of observations, including Bernoulli and nor-
mal outcomes. Together, these features extend past pre-
diction methods. One tradeoff for this versatility, however,
is that the mechanism requires as input the common prior
of agents; the Bayesian truth serum, in contrast, assumes
only that there is a common prior, not that this common
prior is known to the mechanism. While we see this work as
an important first step, it would certainly be interesting if
one could reduce—or perhaps even eliminate—the need for
specific distributional knowledge.

To further explain the name of our mechanism, we note
that agents reveal their subjective distributions essentially
because they are rewarded based on predictions that the
mechanism makes on their behalf. Specifically, the “pre-
dictions of other’s private information” step in Figure 2 is
done by proxy. Agents are hence incentivized to initially re-
port their subjective distributions truthfully so that these
proxy predictions accurately reflect their beliefs. In this
sense, collective revelation borrows insight from the proof
of the classic revelation principle [6, 8], in which a similar
proxy argument is used to transform any mechanism with
a Bayes-Nash equilibrium to a direct mechanism in which
agents truthfully report their types.

As described in Section 3, the initial querying of agents’
subjective distributions is accomplished via hypothetical fu-
ture samples (HFS). Agents make a prediction, are given
additional, hypothetical evidence, and then revise their pre-
diction in light of this new evidence. Although HFS is a par-
ticularly intuitive mechanism for eliciting distributions, it is
by no means the only one, and Garthwaite et al. [4] describe
several alternatives that are easily incorporated into our
mechanism.6 Ultimately, however, we do assume that agents
are sufficiently introspective to accurately impart their be-
liefs. This assumption of self-awareness is standard in the
economic literature. Nonetheless, in practice agents may
simply not be able to accurately communicate their beliefs,
even if the incentives are correct. Consequently, it would be
of significant interest to develop aggregation schemes that do
not require such fine-grained information. In particular, it
is conceivable that predictions of relative performance (e.g.,

6They are primarily interested in situations were coopera-
tive participants would like to convey their information to
researchers. In these cases, the question is not one of truth-
fulness, but rather of ease and accuracy.
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I expect to outperform p% of other agents.) may have cogni-
tive advantages, and could lead to more widely applicable,
yet still rigorous, mechanisms for belief aggregation.
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APPENDIX
A. THE CASE OF NORMALLY

DISTRIBUTED OBSERVATIONS
In the main text we assume that observations are binary

events (i.e., Bernoulli random variables). Here we develop
the collective revelation mechanism for normally distributed
observations. The corresponding mechanisms for other dis-
tributions (e.g., Poisson and exponential) can be derived
similarly. In all these cases, the structure of our arguments
is identical to that for Bernoulli observations (Section 3.1);
the details, however, change sufficiently that generalizing to
completely arbitrary distributions seems difficult.

Here we state analogs of Lemma 3.2, Lemma 3.3, Theo-
rem 3.1 and Corollary 3.1. These results together establish
the basic collective revelation mechanism, which is incentive
compatible, information weighted, and self-verifying. Bud-
get balance follows from the results of Section 3.2.

Lemma A.1. For fixed µ, σ2 let Y be a N(µ, σ2) random
variable, and suppose F (µ) ∼ N(µ̂, σ̂2) is a prior on µ. Fix
n ∈ Z+, s ∈ R and let F (µ | s, n) be the updated poste-
rior distribution on µ given that on n hypothetical trials,Pn

i=1 Xi = s where Xi are independent with the same dis-
tribution as Y . Then

gs,n(µ̂, σ̂2) =
`
EF (µ)Y, EF (µ|s,n)Y

´

is a bijection from R× R+ to

Ω = {(a, b) | a < b < s/n} ∪ {(a, b) | s/n < b < a}

and

g−1
s,n(a, b) =

„
a,

σ2(b− a)
s− nb

«
.
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Proof. The result follows from a straightforward com-
putation. First note that the normal distribution is self-
conjugate, and in particular,

F (µ | s, n) ∼ N

„
µ̂/σ̂2 + s/σ2

1/σ̂2 + n/σ2
,

1
1/σ̂2 + n/σ2

«
.

Furthermore, since E[Y | µ ∼ N(µ̂, σ̂2)] = µ̂, we have

gs,n(µ̂, σ̂2) =

„
µ̂,

µ̂/σ̂2 + s/σ2

1/σ̂2 + n/σ2

«
.

Consequently, for fixed a, b we need to solve the system of
equations

a = µ̂ b =
µ̂/σ̂2 + s/σ2

1/σ̂2 + n/σ2

for µ̂, σ̂2. An elementary computation yields the expression
for the g−1

s,n. Finally, note that g−1
s,n(a, b) ∈ R × R+ if and

only if (b−a)/(s−nb) > 0 (i.e., if and only if (a, b) ∈ Ω).

Lemma A.2. Suppose X1, . . . , Xn are independent N(µ, σ2)
random variables, and F ∼ N(µ̂, σ̂2) is a prior on µ. Let
S =

Pn
i=1 Xi. Then hn,σ2(µ̂, σ̂2) defined by

hn,σ2(µ̂, σ̂2) =

„
EF (µ)

»
S
n

–
, EF (µ)

»
S2

n2

–«

is a bijection from R× R+ to

Ω = {(a, b) : b > a2 + σ2/n}

and

h−1
n,σ2(a, b) =

„
a, b− a2 − σ2

n

«
.

Proof. First, observe that

EF (µ) [S/n] = EF (µ) [Xi] =

Z

R
ξ dF (ξ) = µ̂.

Furthermore, since a linear combination of independent nor-
mal random variables is also normal, S/n ∼ N(µ, σ2/n), we
have

EF (µ)

»
S2

n2

–
=

Z

R

„
σ2

n
+ ξ2

«
dF (ξ) =

σ2

n
+ σ̂2 + µ̂2.

Consequently,

hn,σ2(µ̂, σ̂2) =

„
µ̂,

σ2

n
+ σ̂2 + µ̂2

«
. (A.1)

To compute h−1
n,σ2 , we need to solve for µ̂, σ̂2 in

a = µ̂ b =
σ2

n
+ σ̂2 + µ̂2.

An elementary computation gives the expression for hn,σ2 .
Finally, for (a, b) ∈ R × R, it is clear that h−1

n,σ2(a, b) ∈
R× R+ if and only if (a, b) ∈ Ω.

Theorem A.1. Consider the setting of the Bayesian game
in Section 2 with N ≥ 2 players, X ∼ N(µ, σ2), and a
N(µ̂0, σ̂

2
0) common prior on µ (σ2 is common knowledge).

Let Fi(µ) denote the posterior distribution of agent i after
updating according to its private information. Fix n ∈ Z+,
s ∈ R. Suppose each agent i plays an action (ai, bi) ∈ Ω
where

Ω = {(a, b) | a < b < s/n} ∪ {(a, b) | s/n < b < a}.

Using the notation of Lemmas A.1 and A.2, define

s−i = σ2
X

j $=i

»
P1 ◦ g−1

s,n(aj , bj)

P2 ◦ g−1
s,n(aj , bj)

− µ̂0

σ̂2
0

–

n−i =
1
σ2

X

j $=i

»
1

P2 ◦ g−1
s,n(aj , bj)

− 1
σ̂2

0

–

where Pk is projection onto the kth component. For arbitrary
constants Ci, set the reward to the ith agent to be

Ci −
»
P1 ◦ hn−i,σ2 ◦ g−1

s,n(ai, bi)−
s−i

n−i

–2

−
"
P2 ◦ hn−i,σ2 ◦ g−1

s,n(ai, bi)−
„

s−i

n−i

«2
#2

.

Then

(ai, bi) =
`
EFi(µ)X, EFi(µ|s,n)X

´
(A.2)

is a strict Nash equilibrium.

Proof. The proof is identical in structure to that of The-
orem 3.1. What remains to be shown is that

s−i =
X

j $=i

njX

k=1

Xj,k

and that n−i =
P

j $=i nj . To see this, suppose that the

posterior distribution of agent i on µ is N(µ̂i, σ̂
2
i ), and that

si =
Pni

j=1 Xj . From the posterior hyperparameters µ̂i and
σ̂i, we would like to infer ni and si. Now, by the Bayesian
update rule, we have

µ̂i =
µ̂0/σ̂2

0 + si/σ2

1/σ̂2
0 + ni/σ2

σ̂2
i =

1
1/σ̂2

0 + n/σ2
.

An elementary computation shows that

ni =
1

σ2σ̂2
i

− 1
σ̂2

0σ2
si =

σ2µ̂i

σ̂2
i

− σ2µ̂0

σ̂2
0

.

Finally, in the equilibrium (A.2), g−1
s,n(ai, bi) = (µ̂i, σ̂

2
i ) by

Lemma A.1, and so the result follows.

Corollary A.1. Using the notation of Theorem A.1, sup-
pose agents play the equilibrium strategy (ai, bi) given by
(A.2). For

s̄ = σ2
NX

i=1

»
P1 ◦ g−1

s,n(ai, bi)

P2 ◦ g−1
s,n(ai, bi)

− µ̂0

σ̂2
0

–

n̄ =
1
σ2

NX

i=1

»
1

P2 ◦ g−1
s,n(ai, bi)

− 1
σ̂2

0

–

define the aggregate, confidence-weighted prediction µ̃ by

µ̃ =
µ̂0/σ̂2

0 + s̄/σ2

1/σ̂2
0 + n̄/σ2

.

Let F (µ | {Xi,j}) be the posterior distribution resulting from
the cumulative private evidence of all agents. Then µ̃ =
EF X.

Proof. As shown in the proof of Theorem A.1, n̄ is the
total number of private trials among all players, and s̄ =P

i,j Xi,j . The estimate µ̃ is then obtained by Bayesian
updating.
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