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Abstract

Recent work highlights the role of causality in
designing equitable decision-making algorithms.
It is not immediately clear, however, how existing
causal conceptions of fairness relate to one an-
other, or what the consequences are of using these
definitions as design principles. Here, we first as-
semble and categorize popular causal definitions
of algorithmic fairness into two broad families:
(1) those that constrain the effects of decisions
on counterfactual disparities; and (2) those that
constrain the effects of legally protected charac-
teristics, like race and gender, on decisions. We
then show, analytically and empirically, that both
families of definitions almost always—in a mea-
sure theoretic sense—result in strongly Pareto
dominated decision policies, meaning there is an
alternative, unconstrained policy favored by every
stakeholder with preferences drawn from a large,
natural class. For example, in the case of col-
lege admissions decisions, policies constrained to
satisfy causal fairness definitions would be disfa-
vored by every stakeholder with neutral or positive
preferences for both academic preparedness and
diversity. Indeed, under a prominent definition
of causal fairness, we prove the resulting policies
require admitting all students with the same prob-
ability, regardless of academic qualifications or
group membership. Our results highlight formal
limitations and potential adverse consequences of
common mathematical notions of causal fairness.

*Equal contribution 1Stanford University, Stanford, CA
2New York University, New York, NY 3Harvard Uni-
versity, Cambridge, MA. Correspondence to: Hamed
Nilforoshan <hamedn@cs.stanford.edu>, Johann Gaebler
<jgaeb@stanford.edu>, Ravi Shroff <ravi.shroff@nyu.edu>,
Sharad Goel <sgoel@hks.harvard.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Imagine designing an algorithm to guide decisions for col-
lege admissions. To help ensure algorithms such as this are
broadly equitable, a plethora of formal fairness criteria have
been proposed in the machine learning community (Berk
et al., 2021; Chouldechova, 2017; Chouldechova & Roth,
2020; Cleary, 1968; Corbett-Davies et al., 2017; Darlington,
1971; Dwork et al., 2012; Hardt et al., 2016; Kleinberg et al.,
2017; Woodworth et al., 2017; Zafar et al., 2017a;b). For ex-
ample, under the principle that fair algorithms should have
comparable performance across demographic groups (Hardt
et al., 2016), one might check that among applicants who
were ultimately academically “successful” (e.g., who even-
tually earned a college degree, either at the institution in
question or elsewhere), the algorithm would recommend
admission for an equal proportion of candidates across race
groups. Alternatively, following the principle that decisions
should be agnostic to legally protected attributes like race
and gender (cf. Corbett-Davies & Goel, 2018; Dwork et al.,
2012), one might mandate that these features not be pro-
vided to the algorithm.

Recent scholarship has argued for extending equitable al-
gorithm design by adopting a causal perspective, leading to
myriad additional formal criteria for fairness (Carey & Wu,
2022; Chiappa, 2019; Coston et al., 2020; Galhotra et al.,
2022; Imai & Jiang, 2020; Imai et al., 2020; Kilbertus et al.,
2017; Kusner et al., 2017; Loftus et al., 2018; Mhasawade
& Chunara, 2021; Nabi & Shpitser, 2018; Wang et al., 2019;
Wu et al., 2019; Zhang & Bareinboim, 2018; Zhang et al.,
2017). Less attention, however, has been given to under-
standing the potential downstream consequences of using
these causal definitions of fairness as algorithmic design
principles, leaving an important gap to fill if these criteria
are to responsibly inform policy choices.

Here we synthesize and critically examine the statistical
properties and concomitant consequences of popular causal
approaches to fairness. We begin, in Section 2, by proposing
a two-part taxonomy for causal conceptions of fairness that
mirrors the illustrative, non-causal fairness principles de-
scribed above. Our first category of definitions encompasses
those that consider the effect of decisions on counterfac-
tual disparities. For example, recognizing the causal effect
of college admission on later success, one might demand
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that among applicants who would be academically success-
ful if admitted to a particular college, the algorithm would
recommend admission for an equal proportion of candi-
dates across race groups. The second category of definitions
encompasses those that seek to limit both the direct and
indirect effects of one’s group membership on decisions.
For example, because one’s race might impact earlier ed-
ucational opportunities, and hence test scores, one might
require that admissions decisions are robust to the effect of
race along such causal paths.

We show, in Section 3, that when the distribution of causal
effects is known (or can be estimated), one can efficiently
compute utility-maximizing decision policies constrained
to satisfy each of the causal fairness criteria we consider.
However, for natural families of utility functions—for ex-
ample, those that prefer both higher degree attainment and
more student-body diversity—we prove in Section 4 that
causal fairness constraints almost always lead to strongly
Pareto dominated decision policies. To establish this re-
sult, we use the theory of prevalence (Anderson & Zame,
2001; Christensen, 1972; Hunt et al., 1992; Ott & Yorke,
2005), which extends the notion of full-measure sets to
infinite-dimensional vector spaces. In particular, in our run-
ning college admissions example, adhering to any of the
common conceptions of causal fairness would simultane-
ously result in a lower number of degrees attained and lower
student-body diversity, relative to what one could achieve
by explicitly tailoring admissions policies to achieve de-
sired outcomes. In fact, under one prominent definition
of causal fairness, we prove that the induced policies re-
quire simply admitting all applicants with equal probability,
irrespective of one’s academic qualifications or group mem-
bership. These results, we hope, elucidate the structure—
and limitations—of current causal approaches to equitable
decision making.

2. Causal Approaches to Fair Decision Making
We describe two broad classes of causal notions of fairness:
(1) those that consider outcomes when decisions are counter-
factually altered; and (2) those that consider outcomes when
protected attributes are counterfactually altered. We illus-
trate these definitions in the context of a running example
of college admissions decisions.

2.1. Problem Setup

Consider a population of individuals with observed covari-
ates X , drawn i.i.d from a set X ⊆ Rn with distribution
DX . Further suppose that A ∈ A describes one or more
discrete protected attributes, such as race or gender, which
can be derived from X (i.e., A = α(X) for some mea-
surable function α). Each individual is subject to a binary
decision D ∈ {0, 1}, determined by a (randomized) rule

d(x) ∈ [0, 1], where d(x) = Pr(D = 1 | X = x) is the
probability of receiving a positive decision.1 Given a budget
b with 0 < b < 1, we require the decision rule to satisfy
E[D] ≤ b, limiting the expected proportion of positive deci-
sions.

In our running example, we imagine a population of appli-
cants to a particular college, where d denotes an admissions
rule and D indicates a binary admissions decision. To sim-
plify our exposition, we assume all admitted students attend
the school. In our setting, the covariates X consist of an
applicant’s test score and race A ∈ {a0, a1}, where, for
notational convenience, we consider two race groups. The
budget b bounds the expected proportion of admitted appli-
cants.

Assuming there is no interference between units (Imbens &
Rubin, 2015), we write Y (1) and Y (0) to denote potential
outcomes of interest under each of the two possible binary
decisions, where Y = Y (D) is the realized outcome. We
assume that Y (1) and Y (0) are drawn from a (possibly infi-
nite) set Y ⊆ R, where |Y| > 1. In our admissions example,
Y is a binary variable that indicates college graduation (i.e.,
degree attainment), with Y (1) and Y (0) describing, respec-
tively, whether an applicant would attain a college degree if
admitted to or if rejected from the school we consider. Note
that Y (0) is not necessarily zero, as a rejected applicant
may attend—and graduate from—a different university.

Given this setup, our goal is to construct decision policies d
that are broadly equitable, formalized in part by the causal
notions of fairness described below. We focus on decisions
that are made algorithmically, informed by historical data
on applicants and subsequent outcomes.

2.2. Limiting the Effect of Decisions on Disparities

A popular class of non-causal fairness definitions requires
that error rates (e.g., false positive and false negative rates)
are equal across protected groups (Corbett-Davies & Goel,
2018; Hardt et al., 2016). Causal analogues of these defi-
nitions have recently been proposed (Coston et al., 2020;
Imai & Jiang, 2020; Imai et al., 2020; Mishler et al., 2021),
which require various conditional independence conditions
to hold between the potential outcomes, protected attributes,
and decisions.2

Below we list three representative examples of this class of
fairness definitions: counterfactual predictive parity (Cos-

1That is, D = 1UD≤d(X), where UD is an independent uni-
form random variable.

2In the literature on causal fairness, there is at times ambiguity
between “predictions” Ŷ ∈ {0, 1} of Y and “decisions” D ∈
{0, 1}. Following past work (e.g., Corbett-Davies et al., 2017;
Kusner et al., 2017; Wang et al., 2019), here we focus exclusively
on decisions, with predictions implicitly impacting decisions but
not explicitly appearing in our definitions.
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ton et al., 2020), counterfactual equalized odds (Coston
et al., 2020; Mishler et al., 2021), and conditional principal
fairness (Imai & Jiang, 2020).3

Definition 1. Counterfactual predictive parity holds when

Y (1) ⊥⊥ A | D = 0. (1)

In our college admissions example, counterfactual predictive
parity means that among rejected applicants, the proportion
who would have attained a college degree, had they been
accepted, is equal across race groups.

Definition 2. Counterfactual equalized odds holds when

D ⊥⊥ A | Y (1). (2)

In our running example, counterfactual equalized odds is
satisfied when two conditions hold: (1) among applicants
who would graduate if admitted (i.e., Y (1) = 1), students
are admitted at the same rate across race groups; and (2)
among applicants who would not graduate if admitted (i.e.,
Y (1) = 0), students are again admitted at the same rate
across race groups.

Definition 3. Conditional principal fairness holds when

D ⊥⊥ A | Y (0), Y (1),W, (3)

where, for a measurable function ω on X , W = ω(X)
describes a reduced set of the covariates X . When W is
constant (or, equivalently, when we do not condition on W ),
this condition is called principal fairness.

In our example, conditional principal fairness means that
“similar” applicants—where similarity is defined by the po-
tential outcomes and covariates W—are admitted at the
same rate across race groups.

2.3. Limiting the Effect of Attributes on Decisions

An alternative causal framework for understanding fairness
considers the effects of protected attributes on decisions
(Kilbertus et al., 2017; Kusner et al., 2017; Mhasawade &
Chunara, 2021; Nabi & Shpitser, 2018; Wang et al., 2019;
Wu et al., 2019; Zhang & Bareinboim, 2018; Zhang et al.,
2017). This approach, which can be understood as codifying
the legal notion of disparate treatment (Goel et al., 2017; Za-
far et al., 2017a), considers a decision rule to be fair if, at a
high level, decisions for individuals are the same in “(a) the
actual world and (b) a counterfactual world where the indi-

3Our subsequent analytical results extend in a straightforward
manner to structurally similar variants of these definitions (e.g.,
requiring Y (0) ⊥⊥ A | D = 1 or D ⊥⊥ A | Y (0), variants of
counterfactual predictive parity and counterfactual equalized odds,
respectively).

vidual belonged to a different demographic group” (Kusner
et al., 2017).4

In contrast to “fairness through unawareness”—in which
race and other protected attributes are barred from being
an explicit input to a decision rule (cf. Corbett-Davies &
Goel, 2018; Dwork et al., 2012)—the causal versions of
this idea consider both the direct and indirect effects of
protected attributes on decisions. For example, even if deci-
sions only directly depend on test scores, race may indirectly
impact decisions through its effects on educational opportu-
nities, which in turn influence test scores. This idea can be
formalized by requiring that decisions remain the same in
expectation even if one’s protected characteristics are coun-
terfactually altered, a condition known as counterfactual
fairness (Kusner et al., 2017).

Definition 4. Counterfactual fairness holds when

E[D(a′) | X] = E[D | X]. (4)

where D(a′) denotes the decision when one’s protected
attributes are counterfactually altered to be any a′ ∈ A.

In our running example, this means that for each group
of observationally identical applicants (i.e., those with the
same values of X , meaning identical race and test score),
the proportion of students who are actually admitted is the
same as the proportion who would be admitted if their race
were counterfactually altered.

Counterfactual fairness aims to limit all direct and indirect
effects of protected traits on decisions. In a generalization
of this criterion—termed path-specific fairness (Chiappa,
2019; Nabi & Shpitser, 2018; Wu et al., 2019; Zhang et al.,
2017)—one allows protected traits to influence decisions
along certain causal paths but not others. For example, one
may wish to allow the direct consideration of race by an
admissions committee to implement an affirmative action
policy, while also guarding against any indirect influence of
race on admissions decisions that may stem from cultural
biases in standardized tests (Williams, 1983).

The formal definition of path-specific fairness requires spec-
ifying a causal DAG describing relationships between at-
tributes (both observed covariates and latent variables), de-

4Conceptualizing a general causal effect of an immutable char-
acteristic such as race or gender is rife with challenges, the greatest
of which is expressed by the mantra, “no causation without ma-
nipulation” (Holland, 1986). In particular, analyzing race as a
causal treatment requires one to specify what exactly is meant
by “changing an individual’s race" from, for example, white to
Black (Gaebler et al., 2022; Hu & Kohler-Hausmann, 2020). Such
difficulties can sometimes be addressed by considering a change
in the perception of race by a decision maker (Greiner & Rubin,
2011)—for instance, by changing the name listed on an employ-
ment application (Bertrand & Mullainathan, 2004), or by masking
an individual’s appearance (Chohlas-Wood et al., 2021b; Goldin &
Rouse, 2000; Grogger & Ridgeway, 2006; Pierson et al., 2020).
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Figure 1. A causal DAG illustrating a hypothetical process for
college admissions. Under path-specific fairness, one may require,
for example, that race does not affect decisions along the path
highlighted in red.

cisions, and outcomes. In our running example of college
admissions, we imagine that each individual’s observed co-
variates are the result of the process illustrated by the causal
DAG in Figure 1. In this graph, an applicant’s race A influ-
ences the educational opportunities E available to them prior
to college; and educational opportunities in turn influence
an applicant’s level of college preparation, M , as well as
their score on a standardized admissions test, T , such as the
SAT. We assume the admissions committee only observes
an applicant’s race and test score so that X = (A, T ), and
makes their decision D based on these attributes. Finally,
whether or not an admitted student subsequently graduates
(from any college), Y , is a function of both their preparation
and whether they were admitted.5

To define path-specific fairness, we start by defining, for the
decision D, path-specific counterfactuals, a general concept
in causal DAGs (cf. Pearl, 2001). Suppose G = (V,U ,F)
is a causal model with nodes V , exogenous variables U ,
and structural equations F that define the value at each
node Vj as a function of its parents ℘(Vj) and its associated
exogenous variable Uj . (See, for example, Pearl (2009a)
for further details on causal DAGs.) Let V1, . . . , Vm be a
topological ordering of the nodes, meaning that ℘(Vj) ⊆
{V1, . . . , Vj−1} (i.e., the parents of each node appear in the
ordering before the node itself). Let Π denote a collection
of paths from node A to D. Now, for two possible values a
and a′ for the variable A, the path-specific counterfactuals
DΠ,a,a′ for the decision D are generated by traversing the
list of nodes in topological order, propagating counterfactual
values obtained by setting A = a′ along paths in Π, and
otherwise propagating values obtained by setting A = a.
(In Algorithm 1 in the Appendix, we formally define path-
specific counterfactuals for an arbitrary node—or collection
of nodes—in the DAG.)

To see this idea in action, we work out an illustrative exam-
5In practice, the racial composition of an admitted class may

itself influence degree attainment, if, for example, diversity pro-
vides a net benefit to students (Page, 2007). Here, for simplicity,
we avoid consideration of such peer effects.

ple, computing path-specific counterfactuals for the decision
D along the single path Π = {A→ E → T → D} linking
race to the admissions committee’s decision through test
score, highlighted in red in Figure 1. In the system of equa-
tions below, the first column corresponds to draws V ∗ for
each node V in the DAG, where we set A to a, and then
propagate that value as usual. The second column corre-
sponds to draws V

∗
of path-specific counterfactuals, where

we set A to a′, and then propagate the counterfactuals only
along the path A→ E → T → D. In particular, the value
for the test score T

∗
is computed using the value of E

∗

(since the edge E → T is on the specified path) and the
value of M∗ (since the edge M → T is not on the path).
As a result of this process, we obtain a draw D

∗
from the

distribution of DΠ,a,a′ .

A∗ = a, A
∗
= a′,

E∗ = fE(A
∗), E

∗
= fE(A

∗
),

M∗ = fM (E∗), M
∗
= fM (E∗),

T ∗ = fT (E
∗,M∗), T

∗
= fT (E

∗
,M∗),

D∗ = fD(A∗, T ∗), D
∗
= fD(A∗, T

∗
).

Path-specific fairness formalizes the intuition that the in-
fluence of a sensitive attribute on a downstream decision
may, in some circumstances, be considered legitimate (i.e.,
it may be acceptable for the attribute to affect decisions
along certain paths in the DAG). For instance, an admissions
committee may believe that the effect of race A on admis-
sions decisions D which passes through college preparation
M is legitimate, whereas the effect of race along the path
A→ E → T → D, which may reflect access to test prep or
cultural biases of the tests, rather than actual academic pre-
paredness, is illegitimate. In that case, the admissions com-
mittee may seek to ensure that the proportion of applicants
they admit from a certain race group remains unchanged if
one were to counterfactually alter the race of those individu-
als along the path Π = {A→ E → T → D}.
Definition 5. Let Π be a collection of paths, and, for a
measurable function w on X , let W = ω(X) describe a
reduced set of the covariates X . Path-specific fairness, also
called Π-fairness, holds when, for any a′ ∈ A,

E[DΠ,A,a′ |W ] = E[D |W ]. (5)

In the definition above, rather than a particular counterfac-
tual level a, the baseline level of the path-specific effect
is A, i.e., an individual’s actual (non-counterfactually al-
tered) group membership (e.g., their actual race). We have
implicitly assumed that the decision variable D is a de-
scendant of the covariates X . In particular, without loss of
generality, we assume D is defined by the structural equa-
tion fD(x, uD) = 1uD≤d(x), where the exogenous variable
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uD ∼ UNIF(0, 1), so that Pr(D = 1 | X = x) = d(x). If
Π is the set of all paths from A to D, then DΠ,A,a′ = D(a′),
in which case, for W = X , path-specific fairness is the same
as counterfactual fairness.

3. Constructing Causally Fair Policies
The definitions of causal fairness above constrain the set of
decision policies one might adopt, but, in general, they do
not yield a unique policy. For instance, a policy in which
applicants are admitted randomly and independently with
probability b—where b is the specified budget—satisfies
counterfactual equalized odds (Def. 2), conditional principal
fairness (Def. 3), counterfactual fairness (Def. 4), and path-
specific fairness (Def. 5).6

However, such a randomized policy may be sub-optimal in
the eyes of decision-makers aiming to maximize outcomes
such as class diversity or degree attainment. Past work has
described multiple approaches to selecting a single policy
from among those satisfying any given fairness definition,
including maximizing concordance of the decision with the
outcome variable (Chiappa, 2019; Nabi & Shpitser, 2018)
or with an existing policy (Wang et al., 2019) (e.g., in terms
of binary accuracy or KL-divergence).

Here, as we are primarily interested in the downstream con-
sequences of various causal fairness definitions, we consider
causally fair policies that maximize utility (Cai et al., 2020;
Chohlas-Wood et al., 2021a; Corbett-Davies et al., 2017;
Kasy & Abebe, 2021; Liu et al., 2018).

Suppose u(x) denotes the utility of assigning a positive
decision to individuals with observed covariate values x,
relative to assigning them negative decisions. In our running
example, we set

u(x) = E[Y (1) | X = x] + λ · 1α(x)=a1
, (6)

where E[Y (1) | X = x] denotes the likelihood the applicant
would graduate if admitted, 1α(x)=a1

indicates whether the
applicant identifies as belonging to race group a1 (e.g., a1
may denote a group historically underrepresented in higher
education), and λ ≥ 0 is an arbitrary constant that balances
preferences for both student graduation and racial diversity.

We seek decision policies that maximize expected utility,
subject to satisfying a given definition of causal fairness, as
well as the budget constraint. Specifically, letting C denote
the family of all decision policies that satisfy one of the
causal fairness definitions listed above, a utility-maximizing

6A policy satisfying counterfactual predictive parity (Def. 1)
is not guaranteed to exist. For example, if b = 0—in which case
D = 0 a.s.—and E[Y (1) | A = a1] ̸= E[Y (1) | A = a2], then
Eq. (1) cannot hold. Similar counterexamples can be constructed
for b ≪ 1.

policy d∗ is given by

d∗ ∈ argmax
d∈C

E[d(X) · u(X)]

s.t. E[d(X)] ≤ b.
(7)

Constructing optimal policies poses both statistical and com-
putational challenges. One must, in general, estimate the
joint distribution of covariates and potential outcomes—and,
even more dauntingly, causal effects along designated paths
for path-specific definitions of fairness. In some settings,
it may be possible to obtain these estimates from observa-
tional analyses of historical data or randomized controlled
trials, though both approaches typically involve substantial
hurdles in practice.

We prove that if one has this statistical information, it is pos-
sible to efficiently compute causally fair utility-maximizing
policies by solving either a single linear program or a se-
ries of linear programs (Appendix, Theorem B.1). In the
case of counterfactual equalized odds, conditional principal
fairness, counterfactual fairness, and path-specific fairness,
we show that the definitions can be translated to linear con-
straints. For counterfactual predictive parity, the defining
independence condition yields a quadratic constraint, which
we show can be expressed as a linear constraint by further
conditioning on one of the decision variables, and the opti-
mization problem in turn can be solved through a series of
linear programs.

4. The Structure of Causally Fair Policies
Above, for each definition of causal fairness, we sketched
how to construct utility-maximizing policies that satisfy
the corresponding constraints. Now we explore the struc-
tural properties of causally fair policies. We show—both
empirically and analytically, under relatively mild distribu-
tional assumptions—that policies constrained to be causally
fair are disfavored by every individual in a natural class
of decision makers with varying preferences for diversity.
To formalize these results, we start by introducing some
notation and then defining the concept of (strong) Pareto
dominance.

4.1. Pareto Dominance and Consistent Utilities

For a real-valued utility function u and decision policy d,
we write u(d) = E[d(X) · u(X)] to denote the utility of d
under u.

Definition 6. For a budget b, we say a decision policy d is
feasible if E[d(X)] ≤ b.

Given a collection of utility functions encoding the pref-
erences of different individuals, we say a decision policy
d is Pareto dominated if there exists a feasible alternative
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d′ such that none of the decision makers prefers d over d′,
and at least one decision maker strictly prefers d′ over d, a
property formalized in Definition 7.

Definition 7. Suppose U is a collection of utility functions.
A decision policy d is Pareto dominated if there exists a
feasible alternative d′ such that u(d′) ≥ u(d) for all u ∈ U ,
and there exists u′ ∈ U such that u′(d′) > u′(d). A policy
d is strongly Pareto dominated if there exists a feasible
alternative d′ such that u(d′) > u(d) for all u ∈ U . A policy
d is Pareto efficient if it is feasible and not Pareto dominated,
and the Pareto frontier is the set of Pareto efficient policies.

To develop intuition about the structure of causally fair deci-
sion policies, we continue working through our illustrative
example of college admissions. We consider a collection
of decision makers with utilities U of the form in Eq. (6),
for λ ≥ 0. In this example, decision makers differ in their
preferences for diversity (as determined by λ), but other-
wise have similar preferences. We call such a collection of
utilities consistent modulo α.

Definition 8. We say that a set of utilities U is consistent
modulo α if, for any u, u′ ∈ U :

1. For any x, sign(u(x)) = sign(u′(x));

2. For any x1 and x2 such that α(x1) = α(x2), u(x1) >
u(x2) if and only if u′(x1) > u′(x2).

For consistent utilities, the Pareto frontier takes a partic-
ularly simple form, represented by (a subset of) group-
specific threshold policies.

Proposition 1. Suppose U is a set of utilities that is consis-
tent modulo α. Then any Pareto efficient decision policy d
is a multiple threshold policy. That is, for any u ∈ U , there
exist group-specific constants ta ≥ 0 such that, a.s.:

d(x) =

{
1 u(x) > tα(x),

0 u(x) < tα(x).
(8)

The proof of Proposition 1 is in the Appendix.7

4.2. An Empirical Example

With these preliminaries in place, we now empirically ex-
plore the structure of causally fair decision policies in the

7 In the statement of the proposition, we do not specify what
happens at the thresholds u(x) = tα(x) themselves, as one can
typically ignore the exact manner in which decisions are made
at the threshold. Specifically, given a threshold policy d, we can
construct a standardized threshold policy d′ that is constant within
group at the threshold (i.e., d′(x) = cα(x) when u(x) = tα(x)),
and for which: (1) E[d′(X)|A] = E[d(X)|A]; and (2) u(d′) =
u(d). In our running example, this means we can standardize
threshold policies so that applicants at the threshold are admitted
with the same group-specific probability.
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Figure 2. Utility-maximizing policies for various definitions of
causal fairness in an illustrative example of college admissions,
with the Pareto frontier depicted by the solid purple curve. For
path-specific fairness, we set Π equal to the single path A → E →
T → D, and set W = X . For each causal fairness definition,
the depicted constrained policies are strongly Pareto dominated,
meaning there is an alternative feasible policy that simultaneously
achieves greater student-body diversity and higher college degree
attainment. Our analytical results show, more generally, that under
mild distributional assumptions, every policy constrained to satisfy
these causal fairness definitions is strongly Pareto dominated.

context of our stylized example of college admissions, given
by the causal DAG in Figure 1. In the hypothetical pool of
100,000 applicants we consider, applicants in the target race
group a1 have, on average, fewer educational opportunities
than those applicants in group a0, which leads to lower av-
erage academic preparedness, as well as lower average test
scores. See Section C in the Appendix for additional details,
including the specific structural equations we use.

For the utility function in Eq. (6) with λ = 1
4 , we apply

Theorem B.1 to compute utility-maximizing policies for
each of the above causal definitions of fairness. We plot the
results in Figure 2, where, for each policy, the horizontal
axis shows the expected number of admitted applicants
from the target race group, and the vertical axis shows the
expected number of college graduates. Additionally, for the
family of utilities U given by Eq. (6) for λ ≥ 0, we depict
the Pareto frontier by the solid purple curve, computed
via Proposition 1.8 For reference, the dashed purple line
corresponds to max-utility policies constrained to satisfy

8For all the cases we consider, the optimal policies admit the
maximum proportion of students allowed under the budget b (i.e.,
Pr(D = 1) = b). To compute the Pareto frontier in Figure 2, it is
sufficient—by Proposition 1 and Footnote 7—to sweep over (stan-
dardized) group-specific threshold policies relative to the utility
u0(x) = E[Y (1)|X = x].
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the level of diversity indicated on the x-axis, though these
policies are not on the Pareto frontier, as they result in
fewer college graduates and lower diversity than the policy
that maximizes graduation alone (indicated by the “max
graduation” point in Figure 2).

For each fairness definition, the depicted policies are
strongly Pareto dominated, meaning that there is an alter-
native feasible policy favored by all decision makers with
preferences in U . In particular, for each definition of causal
fairness, there is an alternative feasible policy in which one
simultaneously achieves more student-body diversity and
more college graduates. In some instances, the efficiency
gap is quite stark. Utility-maximizing policies constrained
to satisfy either counterfactual fairness or path-specific fair-
ness require one to admit each applicant independently with
fixed probability b (where b is the budget), regardless of
academic preparedness or group membership.9 These re-
sults show that constraining decision-making algorithms to
satisfy popular definitions of causal fairness can have unin-
tended consequences, and may even harm the very groups
they were ostensibly designed to protect.

4.3. The Statistical Structure of Causally Fair Policies

The patterns illustrated in Figure 2 and discussed above are
not idiosyncracies of our particular example, but rather hold
quite generally. Indeed, Theorem 1 shows that for almost
every joint distribution of X , Y (0), and Y (1) such that
u(X) has a density, any decision policy satisfying counter-
factual equalized odds or conditional principal fairness is
Pareto dominated. Similarly, for almost every joint distri-
bution of X and XΠ,A,a, we show that policies satisfying
path-specific fairness (including counterfactual fairness) are
Pareto dominated. (NB: The analogous statement for coun-
terfactual predictive parity is not true, which we address in
Proposition 2.)

The notion of almost every distribution that we use here was
formalized by Christensen (1972), Hunt et al. (1992), An-
derson & Zame (2001), and others (cf. Ott & Yorke, 2005,
for a review). Suppose, for a moment, that combinations of
covariates and outcomes take values in a finite set of size
m. Then the space of joint distributions on covariates and
outcomes can be represented by the unit (m− 1)-simplex:
∆m−1 = {p ∈ Rm | pi ≥ 0 and

∑m
i=1 pi = 1}. Since

∆m−1 is a subset of an (m− 1)-dimensional hyperplane in
Rm, it inherits the usual Lebesgue measure on Rm−1. In this
finite-dimensional setting, almost every distribution means a
subset of distributions that has full Lebesgue measure on the
simplex. Given a property that holds for almost every distri-
bution in this sense, that property holds almost surely under
any probability distribution on the space of distributions that

9For path-specific fairness, we set Π equal to the single path
A → E → T → D, and set W = X in this example.

is described by a density on the simplex. We use a general-
ization of this basic idea that extends to infinite-dimensional
spaces, allowing us to consider distributions with arbitrary
support. (See the Appendix for further details.)

To prove this result, we make relatively mild restrictions on
the set of distributions and utilities we consider to exclude
degenerate cases, as formalized by Definition 9 below.

Definition 9. Let G be a collection of functions from Z to
Rd for some set Z . We say that a distribution of Z on Z is
G-fine if g(Z) has a density for all g ∈ G.

In particular, U-fineness ensures that the distribution of
u(X) has a density. In the absence of U-fineness, corner
cases can arise in which an especially large number of poli-
cies may be Pareto efficient, in particular when u(X) has
large atoms and X can be used to predict the potential out-
comes Y (0) and Y (1) even after conditioning on u(X). See
Prop. E.7 for details. Our example of college admissions,
where U is defined by Eq. (6), is U-fine.

Theorem 1. Suppose U is a set of utilities consistent modulo
α. Further suppose that for all a ∈ A there exist a U-fine
distribution of X and a utility u ∈ U such that Pr(u(X) >
0, A = a) > 0, where A = α(X). Then,

• For almost every U-fine distribution of X and Y (1),
any decision policy satisfying counterfactual equalized
odds is strongly Pareto dominated.

• If | IMG(ω)| <∞ and there exists a U -fine distribution
of X such that Pr(A = a,W = w) > 0 for all a ∈ A
and w ∈ IMG(ω), where W = ω(X), then, for almost
every U-fine joint distribution of X , Y (0), and Y (1),
any decision policy satisfying conditional principal
fairness is strongly Pareto dominated.

• If | IMG(ω)| <∞ and there exists a U -fine distribution
of X such that Pr(A = a,W = wi) > 0 for all
a ∈ A and some distinct w0, w1 ∈ IMG(ω), then, for
almost every UA-fine joint distributions of A and the
counterfactuals XΠ,A,a′ , any decision policy satisfying
path-specific fairness is strongly Pareto dominated.10

The proof of Theorem 1 is given in the Appendix. At a
high-level, the proof proceed in three steps, which we out-
line below using the example of counterfactual equalized
odds. First, we show that for almost every fixed U -fine joint
distribution µ of X and Y (1) there is at most one policy
d∗(x) satisfying counterfactual equalized odds that is not
strongly Pareto dominated. To see why, note that for any
specific y0, since counterfactual equalized odds requires that

10Here, uA : (xa)a∈A 7→ (u(xa))a∈A and UA is the set of
uA for u ∈ U . In other words, the requirement is that the joint
distribution of the u(XΠ,A,a) has a density.
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D ⊥⊥ A | Y (1) = y0, setting the threshold for one group
determines the thresholds for all the others; the budget con-
straint then can be used to fix the threshold for the original
group. Second, we construct a “slice” around µ such that for
any distribution ν in the slice, d∗(x) is still the only policy
that can potentially lie on the Pareto frontier while satisfy-
ing counterfactual equalized odds. We create the slice by
strategically perturbing µ only where Y (1) = y1, for some
y1 ̸= y0. This perturbation moves mass from one side of the
thresholds of d∗(x) to the other, consequently breaking the
balance requirement D ⊥⊥ A | Y (1) = y1 for almost every
ν in the slice. This phenomenon is similar to the problem of
infra-marginality (Ayres, 2002; Simoiu et al., 2017), which
likewise afflicts non-causal notions of fairness (Corbett-
Davies & Goel, 2018; Corbett-Davies et al., 2017). Finally,
we appeal to the notion of prevalence to stitch the slices
together, showing that for almost every distribution, any
policy satisfying counterfactual equalized odds is strongly
Pareto dominated. Analogous versions of this general argu-
ment apply to the cases of conditional principal fairness and
path-specific fairness.11

In some common settings, path-specific fairness with W =
X constrains decisions so severely that the only allow-
able policies are constant (i.e., d(x1) = d(x2) for all
x1, x2 ∈ X ). For instance, in our running example, path-
specific fairness requires admitting all applicants with the
same probability, irrespective of academic preparation or
group membership. Thus, all applicants are admitted with
probability b, where b is the budget, under the optimal policy
constrained to satisfy path-specific fairness.

To build intuition for this result, we sketch the argument for
a finite covariate space X . Given a policy d that satisfies
path-specific fairness, select x∗ ∈ argmaxx∈X d(x).

By the definition of path-specific fairness, for any a ∈ A,

d(x∗) = E[DΠ,A,a | X = x∗]

=
∑

x∈α−1(a)

d(x) · Pr(XΠ,A,a = x | X = x∗). (9)

That is, the probability of an individual with covariates x∗

receiving a positive decision must be the average probability
of the individuals with covariates x in group a receiving
a positive decision, weighted by the probability that an
individual with covariates x∗ in the real world would have
covariates x counterfactually.

Next, we suppose that there exists an a′ ∈ A such that
Pr(XΠ,A,a′ = x | X = x∗) > 0 for all x ∈ α−1(a′). In
this case, because d(x) ≤ d(x∗) for all x ∈ X , Eq. (9)
shows that in fact d(x) = d(x∗) for all x ∈ α−1(a′).

11This argument does not depend in an essential way on the
definitions being causal. In Corollary E.5, we show an analogous
result for the non-counterfactual version of equalized odds.

Now, let x′ be arbitrary. Again, by the definition of path-
specific fairness, we have that

d(x′) = E[DΠ,A,a′ | X = x′]

=
∑

x∈α−1(a′)

d(x) · Pr(XΠ,A,a′ = x | X = x′)

=
∑

x∈α−1(a′)

d(x∗) · Pr(XΠ,A,a′ = x | X = x∗),

= d(x∗),

where we use in the third equality the fact d(x) = d(x∗)
for all x ∈ α−1(a′), and in the final equality the fact that
XΠ,A,a′ is supported on α−1(a′).

Theorem 2 formalizes and extends this argument to more
general settings, where Pr(XΠ,A,a′ = x | X = x∗) is
not necessarily positive for all x ∈ α−1(a′). The proof of
Theorem 2 is in the Appendix, along with extensions to
continuous covariate spaces and a more complete character-
ization of Π-fair policies for finite X .
Theorem 2. Suppose X is finite and Pr(X = x) > 0 for
all x ∈ X . Suppose Z = ζ(X) is a random variable such
that:

1. Z = ZΠ,A,a′ for all a′ ∈ A,

2. Pr(XΠ,A,a′ = x′ | X = x) > 0 for all a′ ∈ A such
that α(x) ̸= a′ and x, x′ ∈ X such that ζ(x) = ζ(x′).

Then, for any Π-fair policy d, with W = X , there exists a
function f such that d(X) = f(Z), i.e., d is constant across
individuals having the same value of Z.

The first condition of Theorem 2 holds for any reduced set
of covariates Z that is not causally affected by changes in
A (e.g., Z is not a descendent of A). The second condition
requires that among individuals with covariates x, a posi-
tive fraction have covariates x′ in a counterfactual world in
which they belonged to another group a′. Because ζ(x) is
the same in the real and counterfactual worlds—since Z is
unaffected by A, by the first condition—we only consider
x′ such that ζ(x′) = ζ(x) in the second condition.

In our running example, the only non-race covariate is test
score, which is downstream of race. Further, among stu-
dents with a given test score, a positive fraction achieve
any other test score in the counterfactual world in which
their race is altered. As such, the empty set of reduced
covariates—formally encoded by setting ζ to a constant
function—satisfies the conditions of Theorem 2. The theo-
rem then implies that under any Π-fair policy, every appli-
cant is admitted with equal probability.

Even when decisions are not perfectly uniform lotteries, as
in our admissions example, Theorem 2 suggests that en-
forcing Π-fairness can lead to unexpected outcomes. For
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instance, suppose we modify our admissions example to
additionally include age as a covariate that is causally un-
connected to race—as some past work has done. In that
case, Π-fair policies would admit students based on their
age alone, irrespective of test score or race. Although in
some cases such restrictive policies might be desirable, this
strong structural constraint implied by Π-fairness appears
to be a largely unintended consequence of the mathematical
formalism.

The conditions of Theorem 2 are relatively mild, but do not
hold in every setting. Suppose that in our admissions exam-
ple it were the case that TΠ,A,a0 = TΠ,A,a1 + c for some
constant c—that is, suppose the effect of intervening on race
is a constant change to an applicant’s test score. Then the
second condition of Theorem 2 would no longer hold for a
constant ζ. Indeed, any multiple-threshold policy in which
ta0 = ta1 + c would be Π-fair. In practice, though, such
deterministic counterfactuals would seem to be the excep-
tion rather than the rule. For example, it seems reasonable
to expect that test scores would depend on race in complex
ways that induce considerable heterogeneity.

Lastly, we note that W ̸= X in some variants of path-
specific fairness (e.g., Nabi & Shpitser, 2018; Zhang &
Bareinboim, 2018), in which case Theorem 2 does not apply.
Although, in that case, policies are typically still Pareto
dominated in accordance with Theorem 1.

We conclude our analysis by investigating counterfactual
predictive parity, the least demanding of the causal notions
of fairness we have considered, requiring only that Y (1) ⊥⊥
A | D = 0. As such, it is in general possible to have a
policy on the Pareto frontier that satisfies this condition.
However, in Proposition 2, we show that this cannot happen
in some common cases, including our example of college
admissions.

In that setting, when the target group has lower average
graduation rates—a pattern that often motivates efforts to
actively increase diversity—decision policies constrained to
satisfy counterfactual predictive parity are Pareto dominated.
The proof of the proposition is in the Appendix.
Proposition 2. Suppose A = {a0, a1}, and consider the
family U of utility functions of the form

u(x) = r(x) + λ · 1α(x)=a1
,

indexed by λ ≥ 0, where r(x) = E[Y (1) | X = x]. Sup-
pose the conditional distributions of r(X) given A are beta
distributed, i.e.,

r(X) | A = a ∼ BETA(µa, v),

with v > 2 and µa0 > µa1 > 1/v.12 Then any policy

12Here we parameterize the beta distribution in terms of its
mean µ and sample size v. In terms of the common, alternative
α-β parameterization, µ = α/(α+ β) and v = α+ β.

satisfying counterfactual predictive parity is strongly Pareto
dominated.

5. Discussion
We have worked to collect, synthesize, and investigate sev-
eral causal conceptions of fairness that recently have ap-
peared in the machine learning literature. These defini-
tions formalize intuitively desirable properties—for exam-
ple, minimizing the direct and indirect effects of race on
decisions. But, as we have shown both analytically and
with a synthetic example, they can, perhaps surprisingly,
lead to policies with unintended downstream outcomes. In
contrast to prior impossibility results (Chouldechova, 2017;
Kleinberg et al., 2017), in which different formal notions
of fairness are shown to be in conflict with each other, we
demonstrate trade-offs between formal notions of fairness
and resulting social welfare. For instance, in our running
example of college admissions, enforcing various causal
fairness definitions can lead to a student body that is both
less academically prepared and less diverse than what one
could achieve under natural alternative policies, potentially
harming the very groups these definitions were ostensibly
designed to protect. Our results thus highlight a gap between
the goals and potential consequences of popular causal ap-
proaches to fairness.

What, then, is the role of causal reasoning in designing
equitable algorithms? Under a consequentialist perspec-
tive to algorithm design (Cai et al., 2020; Chohlas-Wood
et al., 2021a; Liang et al., 2021), one aims to construct
policies with the most desirable expected outcomes, a task
that inherently demands causal reasoning. Formally, this
approach corresponds to solving the unconstrained optimiza-
tion problem in Eq. (7), where preferences for diversity may
be directly encoded in the utility function itself, rather than
by constraining the class of policies, mitigating potentially
problematic consequences. While conceptually appealing,
this consequentialist approach still faces considerable prac-
tical challenges, including estimating the expected effects
of decisions, and eliciting preferences over outcomes.

Our analysis illustrates some of the limitations of mathe-
matical formalizations of fairness, reinforcing the need to
explicitly consider the consequences of actions, particularly
when decisions are automated and carried out at scale. Look-
ing forward, we hope our work clarifies the ways in which
causal reasoning can aid the equitable design of algorithms.
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A. Path-specific Counterfactuals
Constructing policies which satisfy path-specific fairness
requires computing path-specific counterfactual values of
features. In Algorithm 1, we describe the formal construc-
tion of path-specific counterfactuals ZΠ,a,a′ , for an arbitrary
variable Z (or collection of variables) in the DAG. To gen-
erate a sample Z∗

Π,a,a′ from the distribution of ZΠ,a,a′ , we
first sample values U∗

j for the exogenous variables. Then,
in the first loop, we traverse the DAG in topological order,
setting A to a and iteratively computing values V ∗

j of the
other nodes based on the structural equations in the usual
fashion. In the second loop, we set A to a′, and then itera-
tively compute values Vj

∗
for each node. Vj

∗
is computed

using the structural equation at that node, with value Vℓ
∗

for
each of its parents that are connected to it along a path in
Π, and the value V ∗

ℓ for all its other parents. Finally, we set
Z∗
Π,a,a′ to Z

∗
.

B. Constructing Causally Fair Policies
In order to construct causally fair policies, we prove that the
optimization problem in Eq. (7) can be efficiently solved
as a single linear program—in the case of counterfactual
equalized odds, conditional principal fairness, counterfac-
tual fairness, and path-specific fairness—or as a series of
linear programs in the case of counterfactual predictive par-
ity.

Theorem B.1. Consider the optimization problem given in
Eq. (7).

1. If C is the class of policies that satisfies counterfactual
equalized odds or conditional principal fairness, and
the distribution of (X,Y (0), Y (1)) is known and sup-
ported on a finite set of size n, then a utility-maximizing
policy constrained to lie in C can be constructed via a
linear program with O(n) variables and constraints.

2. If C is the class of policies that satisfies path-specific
fairness (including counterfactual fairness), and the
distribution of (X,DΠ,A,a) is known and supported on

https://math.stackexchange.com/q/3197508
https://math.stackexchange.com/q/3197508
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Algorithm 1: Path-specific counterfactuals
Data: G (topologically ordered), Π, a, and a′

Result: A sample Z∗
Π,a,a′ from ZΠ,a,a′

1 Sample values {U∗
j } for the exogenous variables

/* Compute counterfactuals by

setting A to a */
2 for j = 1, . . . ,m do
3 if Vj = A then
4 V ∗

j ← a

5 else
6 ℘(Vj)

∗ ← {V ∗
ℓ | Vℓ ∈ ℘(Vj)}

7 V ∗
j ← fVj (℘(Vj)

∗, U∗
j )

8 end
9 end

/* Compute counterfactuals by
setting A to a′ and propagating
values along paths in Π */

10 for j = 1, . . . ,m do
11 if Vj = A then
12 V

∗
j ← a′

13 else
14 for Vk ∈ ℘(Vj) do
15 if edge (Vk, Vj) lies on a path in Π then
16 V †

k ← V
∗
k

17 else
18 V †

k ← V ∗
k

19 end
20 end
21 ℘(Vj)

† ← {V †
ℓ | Vℓ ∈ ℘(Vj)}

22 V
∗
j ← fVj

(℘(Vj)
†, U∗

j )

23 end
24 end

25 Z∗
Π,a,a′ ← Z

∗

a finite set of size n, then a utility-maximizing policy
constrained to lie in C can be constructed via a linear
program with O(n) variables and constraints.

3. Suppose C is the class of policies that satisfies coun-
terfactual predictive parity, that the distribution of
(X,Y (1)) is known and supported on a finite set of
size n, and that the optimization problem in Eq. (7)
has a feasible solution. Further suppose Y (1) is sup-
ported on k points, and let ∆k−1 = {p ∈ Rk |
pi ≥ 0 and

∑k
i=1 pi = 1} be the unit (k − 1)-

simplex. Then one can construct a set of linear pro-
grams L = {L(v)}v∈∆k , with each having O(n) vari-
ables and constraints, such that the solution to one of
the LPs in L is a utility-maximizing policy constrained

to lie in C.

Proof. Let X = {x1, . . . , xm}; then, we seek decision vari-
ables di, i = 1, . . . ,m, corresponding to the probability of
making a positive decision for individuals with covariate
value xi. Therefore, we require that 0 ≤ di ≤ 1.

Letting pi = Pr(X = xi) denote the mass of X at xi, note
that the objective function E[d(X) ·u(X)] equals

∑m
i=1 di ·

u(xi) · pi and the budget constraint
∑m

i=1 di · pi ≤ b are
both linear in the decision variables.

We now show that each of the causal fairness definitions can
be enforced via linear constraints. We do so in three parts
as listed in theorem.

Theorem B.1 Part 1 First, we consider counterfactual
equalized odds. A decision policy satisfies counterfactual
equalized odds when D ⊥⊥ A | Y (1). Since D is binary,
this condition is equivalent to the expression E[d(X) | A =
a, Y (1) = y] = E[d(X) | Y (1) = y] for all a ∈ A and y ∈
Y such that Pr(Y (1) = y) > 0. Expanding this expression
and replacing d(xj) by the corresponding decision variable
dj , we obtain that

m∑
i=1

di · Pr(X = xi | A = a, Y (1) = y)

=

m∑
i=1

di · Pr(X = xi | Y (1) = y)

for each a ∈ A and each of the finitely many values y ∈ Y
such that Pr(Y (1) = y) > 0. These constraints are linear
in the di by inspection.

Next, we consider conditional principal fairness. A de-
cision policy satisfies conditional principal fairness when
D ⊥⊥ A | Y (0), Y (1),W , where W = ω(X) denotes a
reduced set of the covariates X . Again, since D is binary,
this condition is equivalent to the expression E[d(X) | A =
a, Y (0) = y0, Y (1) = y1,W = w] = E[d(X) | Y (0) =
y0, Y (1) = y1,W = w] for all y0, y1, and w satisfying
Pr(Y (0) = y0, Y (1) = y1,W = w) > 0. As above,
expanding this expression and replacing d(xj) by the cor-
responding decision variable dj yields linear constraints of
the form

m∑
i=1

di · Pr(X = xi | A = a, S = s)

=

m∑
j=1

di · Pr(X = xi | S = s)

for each a ∈ A and each of the finitely many values of S =
(Y (0), Y (1),W ) such that s = (y0, y1, w) ∈ Y × Y ×W
satisfies Pr(Y (0) = y0, Y (1) = y1,W = w) > 0. Again,
these constraints are linear by inspection.
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Theorem B.1 Part 2 Suppose a decision policy satisfies
path-specific fairness for a given collection of paths Π and
a (possibly) reduced set of covariates W = ω(X), meaning
that for every a′ ∈ A, E[DΠ,A,a′ |W ] = E[D |W ].

Recall from the definition of path-specific counterfactu-
als that DΠ,A,a′ = fD(XΠ,A,a′ , UD) = 1UD≤d(XΠ,A,a′ ),
where UD ⊥⊥ {XΠ,A,a, X}. Since W = ω(X), UD ⊥⊥
{XΠ,A,a,W}, it follows that

E[DΠ,A,a′ |W = w]

=

m∑
i=1

E[DΠ,A,a′ | XΠ,A,a = xi,W = w]

· Pr(XΠ,A,a = xi |W = w)

=

m∑
i=1

E[1UD≤d(XΠ,A,a′ ) | XΠ,A,a = xi,W = w]

· Pr(XΠ,A,a′ = xi |W = w)

=

m∑
i=1

d(XΠ,A,a′) · Pr(XΠ,A,a′ = xi |W = w)

=

m∑
i=1

di · Pr(XΠ,A,a′ = xi |W = w).

An analogous calculation yields that E[D | W = w] =∑m
i=1 di · Pr(X = xi | W = w). Equating these expres-

sions gives

m∑
i=1

di · Pr(X = xi |W = w)

=

m∑
i=1

di · Pr(XΠ,A,a′ = xi |W = w)

for each a′ ∈ A and each of the finitely many w ∈ W such
that Pr(W = w) > 0. Again, each of these constraints is
linear by inspection.

Theorem B.1 Part 3 A decision policy satisfies counter-
factual predictive parity if Y (1) ⊥⊥ A | D = 0, or equiva-
lently, Pr(Y (1) = y | A = a,D = 0) = Pr(Y (1) | D =
0) for all a ∈ A. We may rewrite this expression to obtain:

Pr(Y (1) = y,A = a,D = 0)

Pr(A = a,D = 0)
= Cy,

where Cy = Pr(Y (1) = y | D = 0).

Expanding the numerator on the left-hand side of the above
equation yields

Pr(Y (1) = y,A = a,D = 0)

=

m∑
i=1

[1− di] · Pr(Y (1) = y,A = a,X = xi)

Similarly, expanding the denominator yields

Pr(Y (1) = y,D = 0)

=

m∑
i=1

[1− di] · Pr(Y (1) = y,X = xi).

for each of the finitely many y ∈ Y . Therefore, counterfac-
tual predictive parity corresponds to

m∑
i=1

[1− di] · Pr(Y (1) = y,A = a,X = xi)

= Cy ·
m∑
i=1

[1− di] · Pr(Y (1) = y,X = xi),

(10)

for each a ∈ A and y ∈ Y . Again, these constraints are
linear in the di by inspection.

Consider the family of linear programs L = {L(v)}v∈∆k

where the linear program L(v) has the same objective func-
tion

∑m
i=1 di ·u(xi)·pi and budget constraint

∑m
i=1 di ·pi ≤

b as before, together with additional constraints for each
a ∈ A as in Eq. (10), where Cyi

= vi for i = 1, . . . , k.

By assumption, there exists a feasible solution to the opti-
mization problem in Eq. (7), so the solution to at least one
program in L is a utility-maximizing policy that satisfies
counterfactual predictive parity.

C. A Stylized Example of College Admissions
In the example we consider in Section 2.1, the exogenous
variables U = {uA, uD, uE , uM , uT , uY } in the DAG are
independently distributed as follows:

UA, UD, UY ∼ UNIF(0, 1),

UE , UM , UT ∼ N(0, 1).

For fixed constants µA, βE,0, βE,A, βM,0, βM,E , βT,0,
βT,E , βT,M , βT,B , βT,u, βY,0, βY,D, we define the endoge-
nous variables V = {A,E,M, T,D, Y } in the DAG by the
following structural equations:

fA(uA) =

{
a1 if uA ≤ µA

a0 otherwise
,

fE(a, uE) = βE,0 + βE,A · 1(a = a1) + uE ,

fM (e, uM ) = βM,0 + βM,E · e+ uM ,

fT (e,m, uT ) = βT,0 + βT,E · e
+ βT,M ·m+ βT,B · e ·m+ βT,u · uT ,

fD(x, uD) = 1(uD ≤ d(x)),

fY (m,uY , δ) = 1(uY ≤ logit−1(βY,0 +m+ βY,D · δ)),

where logit−1(x) = (1 + exp(−x))−1 and d(x) is the de-
cision policy. In our example, we use constants µA = 1

3 ,
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βE,0 = 1, βE,A = −1, βM,0 = 0, βM,E = 1, βT,0 = 50,
βT,E = 4, βT,M = 4, βT,u = 7, βT,B = 1, βY,0 = − 1

2 ,
βY,D = 1

2 . We also assume a budget b = 1
2 .

D. Proof of Proposition 1
We begin by more formally defining (multiple) thresh-
old policies. We assume, without loss of generality, that
Pr(A = a) > 0 for all a ∈ A throughout.
Definition D.1. Let u(x) be a utility function. We say that
a policy d(x) is a threshold policy with respect to u if there
exists some t such that

d(x) =

{
1 u(x) > t,

0 u(x) < t,

and d(x) ∈ [0, 1] is arbitrary if u(x) = t. We say that d(x)
is a multiple threshold policy with respect to u if there exist
group-specific constants ta for a ∈ A such that

d(x) =

{
1 u(x) > tα(x),

0 u(x) < tα(x),

and d(x) ∈ [0, 1] is arbitrary if u(x) = tα(x).
Remark 1. In general, it is possible for different thresh-
olds to produce threshold policies that are almost surely
equal. For instance, if u(X) ∼ BERN( 12 ), then the policies
1u(X)>p are almost surely equal for all p ∈ [0, 1). Never-
theless, we speak in general of the threshold associated with
the threshold policy d(X) unless there is ambiguity.

We first observe that if U is consistent modulo α, then
whether a decision policy d(x) is a multiple threshold policy
does not depend on our choice of u ∈ U .
Lemma D.1. Let U be a collection of utilities consistent
modulo α, and suppose d : X → [0, 1] is a decision rule.
If d(x) is a multiple threshold rule with respect to a utility
u∗ ∈ U , then d(x) is a multiple threshold rule with respect
to every u ∈ U . In particular, if d(x) can be represented by
non-negative thresholds over u∗, it can be represented by
non-negative thresholds over any u ∈ U .

Proof. Suppose d(x) is represented by thresholds {t∗a}a∈A
with respect to u∗. We construct the thresholds {ta}a∈A
explicitly.

Fix a ∈ A and suppose that there exists x∗ ∈ α−1(a)
such that u∗(x∗) = t∗a. Then set ta = u(x∗). Now,
if u(x) > ta = u(x∗) then, by consistency modulo α,
u∗(x) > u∗(x∗) = t∗a. Similarly if u(x) < ta then
u∗(x) < t∗a. We also note that by consistency modulo
α, sign(ta) = sign(u(x∗)) = sign(u∗(x∗)) = sign(t∗a).

If there is no x∗ ∈ α−1(a) such that u∗(x∗) = t∗a, then let

ta = inf
x∈Sa

u(x)

where Sa = {x ∈ α−1(a) | u∗(x) > t∗a}. Note that since
sign(u(x)) = sign(u∗(x)) for all x by consistency modulo
α, if t∗a ≥ 0, it follows that ta ≥ 0 as well.

We need to show in this case also that if u(x) > ta then
u∗(x) > t∗a, and if u(x) < ta then u∗(x) < t∗a. To do so,
let x ∈ α−1(a) be arbitrary, and suppose u(x) > ta. Then,
by definition, there exists x′ ∈ α−1(a) such that u(x) >
u(x′) > ta and u∗(x′) > t∗a, whence u∗(x) > u∗(x′) > t∗a
by consistency modulo α. On the other hand, if u(x) < ta,
it follows by the definition of ta that u∗(x) ≤ t∗a; since
u∗(x) ̸= t∗a by hypothesis, it follows that u∗(x) < t∗a.

Therefore, it follows in both cases that for x ∈ α−1(a),
if u(x) > ta then u∗(x) > t∗a, and if u(x) < ta then
u∗(x) < t∗a. Therefore

d(x) =

{
1 if u(x) > tα(x),

0 if u(x) < tα(x),

i.e., d(x) is a multiple threshold policy with respect to u.
Moreover, as noted above, if t∗a ≥ 0 for all a ∈ A, then
ta ≥ 0 for all a ∈ A.

We now prove the following strengthening of Prop. 1.

Lemma D.2. Let U be a collection of utilities consistent
modulo α. Let d(x) be a feasible decision policy that is not
a.s. a multiple threshold policy with non-negative thresholds
with respect to U , then d(x) is strongly Pareto dominated.

Proof. We prove the claim in two parts. First, we show that
any policy that is not a multiple threshold policy is strongly
Pareto dominated. Then, we show that any multiple thresh-
old policy that cannot be represented with non-negative
thresholds is strongly Pareto dominated.

If d(x) is not a multiple threshold policy, then there exists a
u ∈ U and a∗ ∈ A such that d(x) is not a threshold policy
when restricted to α−1(a∗) with respect to u.

We will construct an alternative policy d′(x) that attains
strictly greater utility on α−1(a∗) and is identical elsewhere.
Thus, without loss of generality, we assume there is a single
group, i.e., α(x) = a∗. The proof proceeds heuristically
by moving some of the mass below a threshold to above a
threshold to create a feasible policy with improved utility.

Let b = E[d(X)]. Define

mLo(t) = E[d(X) · 1u(X)<t],

mUp(t) = E[(1− d(X)) · 1u(X)>t].

We show that there exists t∗ such that mUp(t∗) > 0 and
mLo(t∗) > 0. For, if not, consider

t̃ = inf{t ∈ R : mUp(t) = 0}.
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Note that d(X) · 1u(X)>t̃ = 1u(X)>t̃ a.s. If t̃ = −∞, then
by definition d(X) = 1 a.s., which is a threshold policy,
violating our assumption on d(X). If t̃ > −∞, then for any
t′ < t̃, we have, by definition that mUp(t′) > 0, and so by
hypothesis mLo(t′) = 0. Therefore d(X) · 1u(X)<t̃ = 0
a.s., and so, again, d(X) is a threshold policy, contrary to
hypothesis.

Now, with t∗ as above, for notational simplicity, let mUp =
mUp(t∗) and mLo = mLo(t∗) and consider the alternative
policy

d′(x) =


(1−mUp) · d(x) u(x) < t∗,

d(x) u(x) = t∗,

1− (1−mLo) · (1− d(x)) u(x) > t∗.

Then it follows by construction that

E[d′(X)] = (1−mUp) ·mLo + E[d(X) · 1u(X)=t∗ ]

+ Pr(u(X) > t∗)− (1−mLo) ·mUp

= mLo + E[d(X) · 1u(X)=t∗ ]

+ Pr(u(X) > t∗)−mUp

= E[d(X) · 1u(X)<t∗ ] + E[d(X) · 1u(X)=t∗ ]

+ E[1u(X)>t∗ ]− E[(1− d(X)) · 1u(X)>t∗ ]

= E[d(X)]

= b,

so d′(x) is feasible. However,

d′(x)− d(x) = mLo · (1− d(x)) · 1u(x)>t∗

−mUp · d(x) · 1u(x)<t∗ ,

and so

E[(d′(X)− d(X)) · u(X)]

= mLo · E[(1− d(X)) · 1u(X)>t∗ · u(X)]

−mUp · E[d(X) · 1u(X)<t∗ · u(X)]

> mLo · t∗ · E[(1− d(X)) · 1u(X)>t∗ ]

−mUp · t∗ · E[d(X) · 1u(X)<t∗ ]

= t∗ ·mLo ·mUp − t∗ ·mUp ·mLo

= 0.

Therefore

E[d(X) · u(X)] < E[d′(X) · u(X)].

It remains to show that u′(d′) > u′(d) for arbitrary u′ ∈ U .
Let

t′ = inf{u′(x) : d′(x) > d(x)}.

Note that by construction for any x, x′ ∈ X , if d′(x) >
d(x) and d′(x′) < d(x′), then u(x) > t∗ > u(x′). It

follows by consistency modulo α that u′(x) ≥ t′ ≥ u′(x′),
and, moreover, that at least one of the inequalities is strict.
Without loss of generality, assume u′(x) > t′ ≥ u′(x′).
Then, we have that u(x) > t∗ if and only if u′(x) > t′.
Therefore, it follows that

E[(d′(X)− d(X)) · 1u′(X)>t′ ] = mUp > 0.

Since E[d′(X)− d(X)] = 0, we see that

E[(d′(X)− d(X)) · u′(X)]

= E[(d′(X)− d(X)) · 1u′(X)>t′ · u′(X)]

+ E[(d′(X)− d(X)) · 1u′(X)≤t′ · u′(X)]

> t′ · E[(d′(X)− d(X)) · 1u′(X)>t′ ]

+ t′ · E[(d′(X)− d(X)) · 1u′(X)≤t′ ]

= t′ · E[d′(X)− d(X)]

= 0,

where in the inequality we have used the fact that if d′(x) >
d(x), u′(x) > t′, and if d′(x) < d(x), u′(x) ≤ t′. There-
fore

E[d(X) · u′(X)] < E[d′(X) · u′(X)],

i.e., d′(x) strongly Pareto dominates d(x).

Now, we prove the second claim, namely, that a multi-
ple threshold policy τ(x) that cannot be represented with
non-negative thresholds is strongly Pareto dominated. For,
if τ(x) is such a policy, then, by Lemma D.1, for any
u ∈ U , E[τ(X) · 1u(X)<0] > 0. It follows immediately
that τ ′(x) = τ(x) · 1u(x)>0 satisfies u(τ ′) > u(τ). By con-
sistency modulo α, the definition of τ ′(x) does not depend
on our choice of u, and so u(τ ′) > u(τ) for every u ∈ U ,
i.e., τ ′(x) strongly Pareto dominates τ(x).

The following results, which draw on Lemma D.2, are useful
in the proof of Theorem 1.

Definition D.2. We say that a decision policy d(x) is budget-
exhausting if

min(b,Pr(u(X) > 0)) ≤ E[d(X)]

≤ min(b,Pr(u(X) ≥ 0)).

Remark 2. We note that if U is consistent modulo α, then
whether or not a decision policy d(x) is budget-exhausting
does not depend on the choice of u ∈ U . Further, if
Pr(u(X) = 0) = 0—e.g., if the distribution of X is U-
fine—then the decision policy is budget-exhausting if and
only if E[d(X)] = min(b,Pr(u(X) > 0)).

Corollary D.1. Let U be a collection of utilities consis-
tent modulo α. If τ(x) is a feasible policy that is not
a budget-exhausting multiple threshold policy with non-
negative thresholds, then τ(x) is strongly Pareto dominated.
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Proof. Suppose τ(x) is not strongly Pareto dominated. By
Lemma D.2, it is a multiple threshold policy with non-
negative thresholds.

Now, suppose toward a contradiction that τ(x) is not budget-
exhausting. Then, either E[τ(X)] > min(b,Pr(u(X) ≥
0)) or E[τ(X)] < min(b,Pr(u(X) > 0)).

In the first case, since τ(x) is feasible, it follows that
E[τ(X)] > Pr(u(X) ≥ 0). It follows that τ(x) · 1u(x)<0

is not almost surely zero. Therefore

E[τ(X)] < E[τ(X) · 1u(X)>0],

and, by consistency modulo α, this holds for any u ∈ U .
Therefore τ(x) is strongly Pareto dominated, contrary to
hypothesis.

In the second case, consider

d(x) = θ · 1u(x)>0 + (1− θ) · τ(x).

Since E[τ(X)] < min(b,Pr(u(X) > 0)) and

E[d(X)] = θ · Pr(u(X) > 0) + (1− θ) · E[τ(X)],

there exists some θ > 0 such that d(x) is feasible.

For that θ, a similar calculation shows immediately that
u(d) > u(τ), and, by consistency modulo α, u′(d) > u′(τ)
for all u′ ∈ U . Therefore, again, d(x) strongly Pareto
dominates τ(x), contrary to hypothesis.

Lemma D.3. Given a utility u, there exists a mapping T
from [0, 1]A to [−∞,∞]A taking sets of quantiles {qa}a∈A
to thresholds {ta}a∈A such that:

1. T is monotonically non-increasing in each coordinate;

2. For each set of quantiles, there is a multiple threshold
policy τ : X → [0, 1] with thresholds T ({qa}) with
respect to u such that E[τ(X) | A = a] = qa.

Proof. Simply choose

ta = inf{s ∈ R : Pr(u(X) > s) < qa}. (11)

Then define

pa =

{
qa−Pr(u(X)>ta|A=a)

Pr(u(X)=ta|A=a) Pr(u(X) = ta, A = a) > 0

0 Pr(u(X) = ta, A = a) = 0.

Note that Pr(u(X) ≥ ta | A = a) ≥ qa, since, by defi-
nition, Pr(u(X) > ta − ϵ | A = a) ≥ qa for all ϵ > 0.
Therefore,

Pr(u(X) > ta | A = a) + Pr(u(X) = ta | A = a) ≥ qa,

and so pa ≤ 1. Further, since Pr(u(X) > ta | A = a) ≤
qa, we have that pa ≥ 0.

Finally, let

d(x) =


1 u(x) > tα(x),

pa u(x) = tα(x),

0 u(x) < tα(x),

and it follows immediately that E[d(X) | A = a] = qa.
That ta is a monotonically non-increasing function of qa
follows immediately from Eq. (11).

We can further refine Cor. D.1 and Lemma D.3 as follows:

Lemma D.4. Let u be a utility. Then a feasible policy is
utility maximizing if and only if it is a budget-exhausting
threshold policy. Moreover, there exists at least one utility
maximizing policy.

Proof. Let ᾱ be a constant map, i.e., ᾱ : X → Ā, where
|Ā| = 1. Then U = {u} is consistent modulo ᾱ, and so by
Cor. D.1, any Pareto efficient policy is a budget exhausting
multiple threshold policy relative to U . Since U contains
a single element, a policy is Pareto efficient if and only if
it is utility maximizing. Since ᾱ is constant, a policy is a
multiple threshold policy relative to ᾱ if and only if it is a
threshold policy. Therefore, a policy is utility maximizing
if and only if it is a budget exhausting threshold policy. By
Lemma D.3, such a policy exists, and so the maximum is
attained.

E. Prevalence and the Proof of Theorem 1
The notion of a probabilistically “small” set—such as the
event in which an idealized dart hits the exact center of a
target—is, in finite-dimensional real vector spaces, typically
encoded by the idea of a Lebesgue null set.

Here we prove that the set of distributions such that there
exists a policy satisfying either counterfactual equalized
odds, conditional principal fairness, or counterfactual fair-
ness that is not strongly Pareto dominated is “small” in an
analogous sense. The proof turns on the following intuition.
Each of the fairness definitions imposes a number of con-
straints. By Lemma D.2, any policy that is not strongly
Pareto dominated is a multiple threshold policy. By ad-
justing the group-specific thresholds of such a policy, one
can potentially satisfy one constraint per group. If there
are more constraints than groups, then one has no addi-
tional degrees of freedom that can be used to ensure that
the remaining constraints are satisfied. If, by chance, those
constraints are satisfied with the same threshold policy, they
are not satisfied robustly—even a minor distribution shift,
such as increasing the amount of mass above the threshold
by any amount on the relevant subpopulation, will break
them. Therefore, over a “typical” distribution, at most |A|
of the constraints can simultaneously be satisfied by a Pareto
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efficient policy, meaning that typically no Pareto efficient
policy fully satisfies all of the conditions of the fairness
definitions.

Formalizing this intuition, however, requires considerable
care. In Section E.1, we give a brief introduction to a popu-
lar generalization of null sets to infinite-dimensional vector
spaces, drawing heavily on a review article by Ott & Yorke
(2005). In Section E.2 we provide a roadmap of the proof
itself. In Section E.3, we establish the main hypotheses nec-
essary to apply the notion of prevalence to a convex set—in
our case, the set of U-fine distributions. In Section E.4, we
establish a number of technical lemmata used in the proof
of Theorem 1, and provide a proof of the theorem itself in
Section E.5. In Section E.6, we show why the hypothesis
of U-fineness is important and how conspiracies between
atoms in the distribution of u(X) can lead to “robust” coun-
terexamples.

E.1. Shyness and Prevalence

Lebesgue measure λn on Rn has a number of desirable
properties:

• Local finiteness: For any point v ∈ Rn, there exists
an open set U containing x such that λn[U ] <∞;

• Strict positivity: For any open set U , if λn[U ] = 0,
then U = ∅;

• Translation invariance: For any v ∈ Rn and measur-
able set E, λn[E + v] = λn[E].

No measure on an infinite-dimensional, separable Banach
space, such as L1(R), can satisfy these three properties (Ott
& Yorke, 2005). However, while there is no generalization
of Lebesgue measure to infinite dimensions, there is a gen-
eralization of Lebesgue null sets—called shy sets—to the
infinite-dimensional context that preserves many of their
desirable properties.

Definition E.3 (Hunt et al. (1992)). Let V be a completely
metrizable topological vector space. We say that a Borel set
E ⊆ V is shy if there exists a Borel measure µ on V such
that:

1. There exists compact C ⊆ V such that 0 < µ[C] <
∞,

2. For all v ∈ V , µ[E + v] = 0.

An arbitrary set F ⊆ V is shy if there exists a shy Borel set
E ⊆ V containing F .

We say that a set is prevalent if its complement is shy.

Prevalence generalizes the concept of Lebesgue “full mea-
sure” or “co-null” sets (i.e., sets whose complements have
null Lebesgue measure) in the following sense:

Proposition E.3 (Hunt et al. (1992)). Let V be a completely
metrizable topological vector space. Then:

• Any prevalent set is dense in V ;

• If G ⊆ L and G is prevalent, then L is prevalent;

• A countable intersection of prevalent sets is prevalent;

• Every translate of a prevalent set is prevalent;

• If V = Rn, then G ⊆ Rn is prevalent if and only if
λn[Rn \G] = 0.

As is conventional for sets of full measure in finite-
dimensional spaces, if some property holds for every v ∈ E,
where E is prevalent, then we say that the property holds
for almost every v ∈ V or that it holds generically in V .

Prevalence can also be generalized from vector spaces to
convex subsets of vector spaces, although additional care
must be taken to ensure that a relative version of Prop. E.3
holds.

Definition E.4 (Anderson & Zame (2001)). Let V be a
topological vector space and let C ⊆ V be a convex subset
completely metrizable in the subspace topology induced by
V . We say that a universally measurable set E ⊆ C is shy in
C at c ∈ C if for each 1 ≥ δ > 0, and each neighborhood U
of 0 in V , there is a regular Borel measure µ with compact
support such that

SUPP(µ) ⊆ (δ(C − c) + c) ∩ (U + c),

and µ[E + v] = 0 for every v ∈ V .

We say that E is shy in C or shy relative to C if E is shy in
C at c for every c ∈ C. An arbitrary set F ⊆ V is shy in
C if there exists a universally measurable shy set E ⊆ C
containing F .

A set G is prevalent in C if C \G is shy in C.

Proposition E.4 (Anderson & Zame (2001)). If E is shy
at some point c ∈ C, then E is shy at every point in C and
hence is shy in C.

Sets that are shy in C enjoy similar properties to sets that
are shy in V .

Proposition E.5 (Anderson & Zame (2001)). Let V be a
topological vector space and let C ⊆ V be a convex subset
completely metrizable in the subspace topology induced by
V . Then:

• Any prevalent set in C is dense in C;
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• If G ⊆ L and G is prevalent in C, then L is prevalent
in C;

• A countable intersection of sets prevalent in C is preva-
lent in C

• If G is prevalent in C then G+ v is prevalent in C + v
for all v ∈ V .

• If V = Rn and C ⊆ V is a convex subset with non-
empty interior, then G ⊆ C is prevalent in C if and
only if λn[C \G] = 0.

Sets that are shy in C can often be identified by inspecting
their intersections with a finite-dimensional subspace W of
V , a strategy we use to prove Theorem 1.

Definition E.5 (Anderson & Zame (2001)). A universally
measurable set E ⊆ C, where C is convex and completely
metrizable, is said to be k-shy in C if there exists a k-
dimensional subspace W ⊆ V such that

1. A translate of the set C has positive Lebesgue measure
in W , i.e., λW [C + v0] > 0 for some v0 ∈ V ;

2. Every translate of the set E is a Lebesgue null set in
W , i.e., λW [E + v] = 0 for all v ∈ V .

Here λW denotes k-dimensional Lebesgue measure sup-
ported on W .13 We refer to such a W as a k-dimensional
probe witnessing the k-shyness of E, and to an element
w ∈W as a perturbation.

The following intuition motivates the use of probes to detect
shy sets. By analogy with Fubini’s theorem, one can imagine
trying to determine whether a subset of a finite-dimensional
vector space is large or small by looking at its cross sections
parallel to some subspace W ⊆ V . If a set E ⊆ V is
small in each cross section—i.e., if λW [E + v] = 0 for all
v ∈ V —then E itself is small in V , i.e., E has λV -measure
zero.

Proposition E.6 (Anderson & Zame (2001)). Every k-shy
set in C is shy in C.

E.2. Outline

To aid the reader in following the application of the theory
in Section E.1 to the proof of Theorem 1, we provide the
following outline of the argument.

In Section E.3 we establish the context to which we apply
the notion of relative shyness. In particular, we introduce

13Note that Lebesgue measure on W is only defined up to a
choice of basis; however, since λ[T (A)] = | det(T )| · λ[A] for
any linear automorphism T and Lebesgue measure λ, whether a
set has null measure does not depend on the choice of basis.

the vector space K consisting of the totally bounded Borel
measures on the state space K—where K is X × Y , X ×
Y×Y , orA×XA, depending on which notion of fairness is
under consideration. We further isolate the subspace K ⊆ K
of U -fine totally bounded Borel measures. Within this space,
we are interested in the convex set Q ⊆ K, the set of U-
fine joint probability distributions of, respectively, X and
Y (1); X , Y (0), Y (1); or A and the XΠ,A,a. Within Q, we
identify E ⊆ Q, the set of U-fine distributions on K over
which there exists a policy satisfying the relevant fairness
definition that is not strongly Pareto dominated. The claim
of Theorem 1 is that E is shy relative to Q.

To ensure that relative shyness generalizes Lebesgue null
measure in the expected way—i.e., that Prop. E.5 holds—
Definition E.4 has three technical requirements: (1) that the
ambient vector space V be a topological vector space; (2)
that the convex set C be completely metrizable; and (3) that
the shy set E be universally measurable. In Lemma E.7,
we observe that K is a complete topological vector space
under the total variation norm, and so is a Banach space.
We extend this in Cor. E.2, showing that K is also a Banach
space. We use this fact in Lemma E.11 to show that Q
is a completely metrizable subset of K, as well as convex.
Lastly, in Lemma E.13, we show that the set E is closed,
and therefore universally measurable.

In Section E.4, we develop the machinery needed to con-
struct a probe W for the proof of Theorem 1 and prove sev-
eral lemmata simplifying the eventual proof of the theorem.
To build the probe, it is necessary to construct measures
µmax,a with maximal support on the utility scale. This en-
sures that if any two threshold policies produce different
decisions on any µ ∈ K, they will produce different de-
cisions on typical perturbations. The construction of the
µmax,a, is carried out in Lemma E.14 and Cor. E.3. Next,
we introduce the basic style of argument used to show that
a subset of Q is shy in Lemma E.15 and Lemma E.16, in
particular, by showing that the set of µ ∈ Q that give posi-
tive probability to an event E is either prevalent or empty.
We use then use a technical lemma, Lemma E.17, to show,
in effect, that a generic element of Q has support on the
utility scale wherever a given fixed distribution µ ∈ Q does.
In Defn. E.12, we introduce the concept of overlapping
and splitting utilities, and show in Lemma E.19 that this
property is generic in Q unless there exists a ω-stratum
that contains no positive-utility observables x. Lastly, in
Lemma E.20, we provide a mild simplification of the char-
acterization of finitely shy sets that makes the the proof of
Theorem 1 more straightforward.

Finally, in Section E.5, we give the proof of Theorem 1.
We divide the proof into three parts. In the first part, we
restrict our attention to the case of counterfactual equal-
ized odds, and show in detail how to combine the lemmata
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of the previous section to construct the (at most) 2 · |A|-
dimensional probe W. In the second part we consider two
distinct cases. The argument in both cases is conceptu-
ally parallel. First, we argue that the balance conditions of
counterfactual equalized odds encoded by Eq. (2) must be
broken by a typical perturbation in W. In particular, we
argue that for a given base distribution µ, there can be at
most one budget-exhausting multiple threshold policy that
can—although need not necessarily—satisfy counterfactual
equalized odds. We show that the form of this policy cannot
be altered by an appropriate perturbation in W, but that
the conditional probability of a positive decision will, in
general, be altered in such a way that Eq. (2) can only hold
for a λW-null set of perturbations. In the final section, we
lay out modiciations that can be made to the proof given
for counterfactual equalized odds in the first two parts that
adapt the argument to the cases of conditional principal
fairness and path-specific fairness. In particular, we show
how to construct the probe W in such a way that the addi-
tional conditioning on the reduced covariates W = ω(X)
in Eqs. (3) and (5) does not affect the argument.

E.3. Convexity, Complete Metrizability, and Universal
Measurability

In this section, we establish the background requirements
of Prop. E.6 for the setting of Theorem 1. In particular, we
exhibit the U -fine distributions as a convex subset of a topo-
logical vector space, the set of totally bounded U -fine Borel
measures. We show that the U -fine probability distributions
form a completely metrizable subset in the topology it in-
herits from the space of totally bounded measures. Lastly,
we show that the set of regular distributions under which
there exists a Pareto efficient policy satisfying one of the
three fairness criteria is closed, and therefore universally
measurable.

E.3.1. BACKGROUND AND NOTATION

We begin by establishing some notational conventions. We
letK denote the underlying state space over which the distri-
butions in Theorem 1 range. Specifically, K = X ×Y in the
case of counterfactual equalized odds; K = X × Y × Y in
the case of conditional principal fairness; and K = A×XA

in the case of path-specific fairness. We note that since
X ⊆ Rk for some k and Y ⊆ R,K may equivalently be con-
sidered a subset of Rn for some n ∈ N, with the subspace
topology (and Borel sets) inherited from Rn.14

We recall the definition of totally bounded measures.

Definition E.6. LetM be a σ-algebra on V , and let µ be a

14In the case of path-specific fairness, we can equivalently think
of A as a set of integers indexing the groups.

countably additive (V,M)-measure. Then, we define

|µ|[E] = sup

∞∑
i=1

|µ[Ei]| (12)

where the supremum is taken over all countable partitions
{Ei}i∈N, i.e., collections such that

⋃∞
i=1 Ei = E and Ei ∩

Ej = ∅ for j ̸= i. We call |µ| the total variation of µ, and
the total variation norm of µ is |µ|[V ].

We say that µ is totally bounded if its total variation norm
is finite, i.e., |µ|[V ] <∞.
Lemma E.5. If µ is totally bounded, then |µ| is a finite
positive measure on (V,M), and |µ[E]| ≤ |µ|[E] for all
E ∈M.

See Theorem 6.2 in Rudin (1987) for proof.

We let K denote the set of totally bounded Borel measures
on K. We note that, in the case of path specific fairness,
which involves the joint distributions of counterfactuals, X
is not defined directly. Rather, the joint distribution of the
counterfactuals XΠ,A,a′ and A defines the distribution of
X through consistency, i.e., what would have happened
to someone if their group membership were changed to
a′ ∈ A is what actually happens to them if their group
membership is a′. More formally, Pr(X ∈ E | A = a′) =
Pr(XΠ,A,a′ ∈ E | A = a′) for all Borel sets E ⊆ X . (See
§ 3.6.3 in Pearl (2009b).)

For any µ ∈ K, we adopt the following notational conven-
tions. If we say that a property holds µ-a.s., then the subset
of K on which the property fails has |µ|-measure zero. If
E ⊆ K is a measurable set, then we denote by µ ↾E the
restriction of µ to E, i.e., the measure defined by the map-
ping E′ 7→ µ[E ∩ E′]. We let Eµ[f ] =

∫
K f dµ, and for

measurable sets E, Prµ(E) = µ[E].15 The fairness criteria
we consider involve conditional independence relations. To
make sense of conditional independence relations more gen-
erally, for Borel measurable f we define Eµ[f | F ] to be the
Radon-Nikodym derivative of the measure E 7→ Eµ[f · 1E ]
with respect to the measure µ restricted to the sub–σ-algebra
of Borel sets F . (See § 34 in Billingsley (1995).) Similarly,
we define Eµ[f | g] to be Eµ[f | σ(g)], where σ(g) denotes
the sub–σ-algebra of the Borel sets generated by g. In cases
where the condition can occur with non-zero probability, we
can instead make use of the elementary definition of discrete
conditional probability.
Lemma E.6. Let g be a Borel function on K, and suppose
Prµ(g = c) ̸= 0 for some constant c ∈ R. Then, we have
that µ-a.s., for any Borel function f ,

Eµ[f | g] · 1g=c =
Eµ[f · 1g=c]

Prµ(g = c)
· 1g=c.

15To state and prove our results in a notationally uniform way,
we occasionally write Prµ(E) even when µ ranges over measures
that may not be probability measures.
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See Rao (2005) for proof.

With these notational conventions in place, we turn to estab-
lishing the background conditions of Prop. E.6.

Lemma E.7. The set of totally bounded measures on a
measure space (V,M) form a complete topological vector
space under the total variation norm, and hence a Banach
space.

See, e.g., Steele (2019) for proof. It follows from this that
K is a Banach space.
Remark 3. Since K is a Banach space, it possesses a topol-
ogy, and consequently a collection of Borel subsets. These
Borel sets are to be distinguished from the Borel subsets of
the underlying state space K, which the elements of K mea-
sure. The requirement that the subset E of the convex set C
be universally measurable in Proposition E.6 is in reference
to the Borel subsets of K; the requirement that µ ∈ K be a
Borel measure is in reference to the Borel subsets of K.

Recall the definition of absolute continuity.

Definition E.7. Let µ and ν be measures on a measure
space (V,M). We say that a measure ν is absolutely contin-
uous with respect to µ—also written ν Î µ—if, whenever
µ[E] = 0, ν[E] = 0.

Absolute continuity is a closed property in the topology
induced by the total variation norm.

Lemma E.8. Consider the space of totally bounded mea-
sures on a measure space (V,M) and fix µ. The set of ν
such that ν Î µ is closed.

Proof. Let {νi}i∈N be a convergent sequence of measures
absolutely continuous with respect to µ. Let the limit of the
νi be ν. We seek to show that ν Î µ. Let E ∈ M be an
arbitrary set such that µ[E] = 0. Then, we have that

ν[E] = lim
n→∞

νi[E]

= lim
n→∞

0

= 0,

since νi Î µ for all i. Since E was arbitrary, the result
follows.

Recall the definition of a pushforward measure.

Definition E.8. Let f : (V,M) → (V ′,M′) be a mea-
surable function. Let µ be a measure on V . We de-
fine the pushforward measure µ ◦ f−1 on V ′ by the map
E′ 7→ µ[f−1(E′)] for E′ ∈M′.

Within K, in the case of counterfactual equalized odds and
conditional principal fairness, we define the subspace K to
be the set of totally bounded measures µ on K such that the

pushforward measure µ ◦ u−1 is absolutely continuous with
respect to the Lebesgue measure λ on R for all u ∈ U . By
the Radon-Nikodym theorem, these pushforward measures
arise from densities, i.e., for any µ ∈ K, there exists a
unique fµ ∈ L1(R) such that for any measurable subset E
of R, we have

µ ◦ u−1[E] =

∫
E

fµ dλ.

In the case of path-specific fairness, we require the joint
distributions of the counterfactual utilities to have a joint
density. That is, we define the subspace K to be the set of
totally bounded measures µ on K such that the pushforward
measure µ ◦ (uA)−1 is absolutely continuous with respect
to Lebesgue measure on RA for all u ∈ U . Here, we recall
that

uA : (a, (xa′)a′∈A) 7→ (u(xa′))a′∈A.

As before, there exists a corresponding density fµ ∈
L1(RA).

We therefore see that K extends in a natural way the notion
of a U - or UA-fine distribution, and so, by a slight abuse of
notation, refer to K as the set of U-fine measures on K.

Indeed, since Prµ(u(X) ∈ E,A = a) ≤ Prµ(u(X) ∈ E),
it also follows that, for a ∈ A such that Prµ(A = a) > 0,
the conditional distributions of u(X) | A = a are also
absolutely continuous with respect to Lebesgue measure,
and so also have densities. For notational convenience, we
set fµ,a to be the function satisfying

Prµ(u(X) ∈ E,A = a) =

∫
E

fµ,a dλ,

so that fµ =
∑

a∈A fµ,a.

Since absolute continuity is a closed condition, it follows
that K is a closed subspace of K. This leads to the following
useful corollary of Lemma E.8.

Corollary E.2. The collection of U -fine measures on K is a
Banach space.

Proof. It is straightforward to see that K is a subspace of
K. Since K is a closed subset of K by Lemma E.8, it is
complete, and therefore a Banach space.

We note the following useful fact about elements of K.

Lemma E.9. Consider the mapping µ 7→ fµ from K to
L1(R) given by associating a measure µ with the Radon-
Nikodym derivative of the pushforward measure µ ◦ u−1.
This mapping is continuous. Likewise, the mapping µ 7→
fµ,a is continuous for all a ∈ A, and, in the case of path-
specific fairness, the mapping of µ to the Radon-Nikodym
derivative of µ ◦ (uA)−1 is continuous.
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Proof. We show only the first case. The others follow by
virtually identical arguments.

Let ϵ > 0 be arbitrary. Choose µ ∈ K, and suppose that
|µ− µ′|[K] < ϵ. Then, let

EUp = {x ∈ R : fµ(x) > fµ′(x)}
ELo = {x ∈ R : fµ(x) < fµ′(x)}.

Then EUp and ELo are disjoint, so we have that

∥fµ − fµ′∥L1(R) =

∣∣∣∣∫
EUp

fµ − fµ′ dλ

∣∣∣∣
+

∣∣∣∣∫
ELo

fµ − fµ′ dλ

∣∣∣∣
= |(µ− µ′)[u−1(EUp)]|

+ |(µ− µ′)[u−1(ELo)]|
< ϵ,

where the second equality follows by the definition of
pushforward measures and the inequality follows from
Lemma E.5. Since ϵ was arbitrary, the claim follows.

Finally, we define Q. We let Q be the subset of K consisting
of all U -fine probability measures, i.e., measures µ ∈ K such
that:

1. The measure µ is U-fine;

2. For all Borel sets E ⊆ K, µ[E] ≥ 0;

3. The measure of the whole space is unity, i.e., µ[K] = 1.

We conclude the background and notation by observing that
threshold policies are defined wholly by their thresholds for
distributions in K and Q. Importantly, this observation does
not hold when there are atoms on the utility scale—which
measures in K lack—which can in turn lead to counterex-
amples to Theorem 1; see Appendix E.6.
Lemma E.10. Let τ0(x) and τ1(x) be two multiple thresh-
old policies. If τ0(x) and τ1(x) have the same thresholds,
then for any µ ∈ K, τ0(X) = τ1(X) µ-a.s. Similarly, for
µ ∈ Q, if

Eµ[τ0(X) | A = a] = Eµ[τ1(X) | A = a]

for all a ∈ A such that Prµ(A = a) > 0, then τ0(X) =
τ1(X) µ-a.s.

Moreover, for µ ∈ K in the case of path-specific fair-
ness, if τ0(x) and τ1(x) have the same thresholds, then
τ0(XΠ,A,a) = τ1(XΠ,A,a) µ-a.s. for any a ∈ A. Similarly,
for µ ∈ Q in the case of path-specific fairness, if

Eµ[τ0(XΠ,A,a)] = Eµ[τ1(XΠ,A,a)]

then τ0(XΠ,A,a) = τ1(XΠ,A,a) µ-a.s. as well.

Proof. First, we show that threshold policies with the same
thresholds are equal, then we show that threshold policies
that distribute positive decisions across groups in the same
way are equal.

Let {ta}a∈A denote the shared set of thresholds. It follows
that if τ0(x) ̸= τ1(x), then u(x) = tα(x). Now,

Pr(u(X) = ta, A = a) =

∫ ta

ta

fµ,a dλ = 0,

so Prµ(τ0(X) ̸= τ1(X)) = 0. Next, suppose

Eµ[τ0(X) | A = a] = Eµ[τ1(X) | A = a].

If the thresholds of the two policies agree for all a ∈ A such
that Prµ(A = a) > 0, then we are done by the previous
paragraph. Therefore, suppose t0a ̸= t1a for some suitable
a ∈ A, where tia represents the threshold for group a ∈ A
under the policy τi(x). Without loss of generality, suppose
t0a < t1a. Then, it follows that∫ t1a

t0a

fµ,a dλ = Eµ[τ0(X) | A = a]− Eµ[τ1(X) | A = a]

= 0.

Since µ ∈ Q, µ = |µ|, whence

Pr|µ|(t
a
0 ≤ u(X) ≤ t1a | A = a) = 0.

Since this is true for all a ∈ A such that Prµ(A = a) > 0,
τ0(X) = τ1(X) µ-a.s.

The proof in the case of path-specific fairness is almost
identical.

E.3.2. CONVEXITY, COMPLETE METRIZABILITY, AND
UNIVERSAL MEASURABILITY

The set of regular U-fine probability measures Q is the set
to which we wish to apply Prop. E.6. To do so, we must
show that Q is a convex and completely metrizable subset
of K.
Lemma E.11. The set of regular probability measures Q is
convex and completely metrizable.

Proof. The proof proceeds in two pieces. First, we show
that the U-fine probability distributions are convex, as can
be verified by direct calculation. Then, we show that Q is
closed and therefore complete in the original metric of K.

We begin by verifying convexity. Let µ, µ′ ∈ Q and let
E ⊆ K be an arbitrary Borel subset of K. Then, choose
θ ∈ [0, 1], and note that

(θ · µ+ [1− θ] · µ′)[E] = θ · µ[E] + [1− θ] · µ′[E]

≥ θ · 0 + [1− θ] · 0
= 0,
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and, likewise, that

(θ · µ+ [1− θ] · µ′)[K] = θ · µ[K] + [1− θ] · µ′[K]
= θ · 1 + [1− θ] · 1
= 1.

It remains only to show that Q is completely metrizable. To
prove this, it suffices to show that it is closed, since closed
subsets of complete spaces are complete, and K is a Banach
space by Cor. E.2, and therefore complete.

Suppose {µi}i∈N is a convergent sequence of probability
measures in K with limit µ. Then

µ[E] = lim
i→∞

µi[E] ≥ lim
i→∞

0 = 0

and
µ[K] = lim

i→∞
µi[K] = lim

i→∞
1 = 1.

Therefore Q is closed, and therefore complete, and hence is
a convex, completely metrizable subset of K.

Next we prove that the set E of regular U -fine densities over
which there exists a policy satisfying the relevant counterfac-
tual fairness definition that is not strongly Pareto dominated
is universally measurable.

Recall the definition of universal measurability.

Definition E.9. Let V be a complete topological space.
Then E ⊆ V is universally measurable if V is measurable
by the completion of every finite Borel measure on V , i.e.,
if for every finite Borel measure µ, there exist Borel sets E′

and S such that E △ E′ ⊆ S and µ[S] = 0.

We note that if a set is Borel, it is by definition universally
measurable. Moreover, if a set is open or closed, it is by
definition Borel.

To show that E is closed, we show that any convergent se-
quence in E has a limit in E. The technical complication of
the argument stems from the following fact that satisfying
the fairness conditions, e.g., Eq. (4), involves conditional
expectations, about which very little can be said in the ab-
sence of a density, and which are difficult to compare when
taken across distinct measures.

To handle these difficulties, we begin with a technical
lemma, Lemma E.12, which gives a coarse bound on how
different the conditional expectations of the same variable
can be with respect to a sub–σ-algebra F over two different
distributions, µ and µ′, before applying the results to the
proof of Lemma E.13.

Definition E.10. Let µ be a measure on a measure space
(V,M), and let f be µ-measurable. Consider the equiv-
alence class of M-measurable functions C = {g : g =

f µ-a.e.}.16 We say that any g ∈ C is a version of f , and
that g ∈ C is a standard version if g(v) ≤ C for some
constant C and all v ∈ V .

Remark 4. It is straightforward to see that for f ∈ L∞(µ),
a standard version always exists with C = ∥f∥∞.

Remark 5. Note that in general, the conditional expectation
Eµ′ [f | F ] is defined only µ′-a.e. If µ is not assumed to be
absolutely continuous with respect to µ′, it follows that

∥Eµ[f | F ]− Eµ′ [f | F ]∥L1(µ) (13)

is not entirely well-defined, in that its value depends on
what version of Eµ′ [f | F ] one chooses. For appropriate
f , however, one can nevertheless bound Eq. (13) for any
standard version of Eµ′ [f | F ].

Lemma E.12. Let µ, µ′ be totally bounded measures on a
measure space (V,M). Let f ∈ L∞(µ) ∩ L∞(µ′). Let F
be a sub–σ-algebra ofM. Let

C = max(∥f∥L∞(µ), ∥f∥L∞(µ′)).

Then, if g is a standard version of Eµ′ [f | F ], we have that

∫
V

|Eµ[f | F ]− g|dµ ≤ 4C · |µ− µ′|[V ]. (14)

Proof. First, we note that both Eµ[f | F ] and g are F-
measurable. Therefore, the sets

EUp = {v ∈ V : Eµ[f | F ](v) > g(v)}

and

ELo = {v ∈ V : Eµ[f | F ](v) < g(v)}

are in F . Now, note that

∫
V

|Eµ[f | F ]− g|dµ =

∫
EUp

Eµ[f | F ]− g dµ

+

∫
ELo

g − Eµ[f | F ] dµ.

16Some authors define Lp(µ) spaces to consist of such equiva-
lence classes, rather than the definition we use here.
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First consider EUp. Then, we have that∫
EUp

Eµ[f | F ]− g dµ

=

∫
EUp

Eµ[f | F ]− g dµ

+

∫
EUp

g − g dµ′

≤
∣∣∣∣∫

EUp

Eµ[f | F ] dµ−
∫
EUp

g dµ′
∣∣∣∣

+

∫
Eup

g d|µ− µ′|

≤
∣∣∣∣∫

EUp

f dµ−
∫
EUp

f dµ′
∣∣∣∣

+

∫
Eup

C d|µ− µ′|,

where in the final inequality, we have used the fact that,
since g is a standard version of Eµ′ [f | F ],

g(v) ≤ ∥Eµ′ [f | F ]∥L∞(µ′) ≤ C

for all v ∈ V , and the fact that, by the definition of condi-
tional expectation,∫

E

Eν [h | F ] dν =

∫
E

hdν

for any E ∈ F .

Since f is everywhere bounded by C, applying Lemma E.5
yields that this final expression is less than or equal to 2C ·
|µ− µ′|[V ]. An identical argument shows that∫

ELo

g − Eµ[f | F ] dµ ≤ 2C · |µ− µ′|[V ],

whence the result follows.

Lemma E.13. Let E ⊆ Q denote the set of joint densities
on K such that there exists a policy satisfying the relevant
fairness definition that is not strongly Pareto dominated.
Then, E is closed, and therefore universally measurable.

Proof. For notational simplicity, we consider the case of
counterfactual equalized odds. The proofs in the other two
cases are virtually identical.

Suppose µi → µ in K, where {µi}i∈N ⊆ E. Then,
by Lemma E.9, fµi,a → fµ,a in L1(R). Moreover, by
Lemma D.2, there exists a sequence of threshold policies
{τi(x)}i∈N such that both

Eµi [τ(X)] = min(b,Prµi(u(X) > 0))

and

Eµi [τi(X) | A, Y (1)] = Eµi [τi(X) | Y (1)].

Let {qa,i}a∈A be defined by

qa,i = Eµi
[τi(X) | A = a]

if Prµi(A = a) > 0, and qa,i = 0 otherwise.

Since [0, 1]A is compact, there exists a convergent subse-
quence {{qa,ni

}a∈A}i∈N. Let it converge to the collection
of quantiles {qa}a∈A defining, by Lemma D.3, a multiple
threshold policy τ(x) over µ.

Because µi → µ and {qa,ni}a∈A → {qa}a∈A, we have
that

Eµ[τa,ni
(X) | A = a]→ Eµ[τ(X) | A = a]

for all a ∈ A such that Prµ(A = a) > 0. Therefore, by
Lemma E.9, τni

(X)→ τ(X) in L1(µ).

Choose ϵ > 0 arbitrarily. Then, choose N so large that for i
greater than N ,

|µ− µni |[K] < ϵ
10 , ∥τ(X)− τni(X)∥L1(µ) ≤ ϵ

10 .

Then, observe that τ(x), τi(x) ≤ 1, and recall that

Eµni
[τni(X) | A, Y (1)] = Eµni

[τni(X) | Y (1)]. (15)

Therefore, let gi(x) be a standard version of Eµni
[τni

(X) |
Y (1)] over µni . By Eq. (15), gi(x) is also a standard version
of Eµni

[τni(X) | A, Y (1)] over µni . Then, by Lemma E.12,
we have that

∥Eµ[τ(X) | A, Y (1)]− Eµni
[τni(X) | Y (1)]∥L1(µ)

≤ ∥Eµ[τ(X) | A, Y (1)]

− Eµ[τni
(X) | A, Y (1)]∥L1(µ)

+ ∥Eµ[τni
(X) | A, Y (1)]− gi(X)∥L1(µ)

+ ∥gi(X)− Eµ[τni
(X) | Y (1)]∥L1(µ)∥L1(µ)

+ ∥Eµ[τni
(X) | Y (1)− Eµ[τ(X) | Y (1)]∥L1(µ)

<
ϵ

10
+

4ϵ

10
+

4ϵ

10
+

ϵ

10
.

Since ϵ > 0 was arbitrary, it follows that, µ-a.e.,

Eµ[τ(X) | A, Y (1)] = Eµ[τ(X) | Y (1)].

Recall the standard fact that for independent random vari-
ables X and U ,

E[f(X,U) | X] =

∫
f(X,u) dFU (u),

where FU is the distribution of U .17 Further recall that
D = 1UD≤τ(X), where UD ⊥⊥ X,Y (1). It follows that

Prµ(D = 1 | X,Y (1)) =

∫ 1

0

1ud<τ(X) dλ(ud) = τ(X).

17For a proof of this fact see, e.g., Brozius (2019).
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Hence, by the law of iterated expectations,

Prµ(D = 1 | A, Y (1))

= Eµ[Prµ(D = 1 | X,Y (1)) | A, Y (1)]

= Eµ[τ(X) | A, Y (1)]

= Eµ[τ(X) | Y (1)]

= Eµ[Prµ(D = 1 | X,Y (1)) | Y (1)]

= Prµ(D = 1 | Y (1)).

Therefore D ⊥⊥ A | Y (1) over µ, i.e., counterfactual equal-
ized odds holds for the decision policy τ(x) over the dis-
tribution µ. Consequently µ ∈ E, and so E is closed and
therefore universally measurable.

E.4. Shy Sets and Probes

We require a number of additional technical lemmata for
the proof of Theorem 1. The probe must be constructed
carefully, so that, on the utility scale, an arbitrary element
of Q is absolutely continuous with respect to a typical per-
turbation. In addition, it is useful to show that a number
of properties are generic to simplify certain aspects of the
proof of Theorem 1. For instance, Lemma E.16 is used in
Theorem 1 to show that a certain conditional expectation
is generically well-defined, avoiding the need to separately
treat certain corner cases.

Cor. E.3 concerns the construction of the probe used in the
proof of Theorem 1. Lemmata E.17 to E.20 use Cor. E.3 to
provide additional simplifications to the proof of Theorem 1.

E.4.1. MAXIMAL SUPPORT

First, to construct the probe used in the proof of Theorem 1,
we require elements µ ∈ Q such that the densities fµ have
“maximal” support. To produce such distributions, we use
the following measure-theoretic construction.

Definition E.11. Let {Eα}γ∈Γ be an arbitrary collection of
µ-measurable sets for some positive measure µ on a measure
space (M,M). We say that E is the measure-theoretic
union of {Eγ}γ∈Γ if µ[Eγ \ E] = 0 for all γ ∈ Γ and
E =

⋃∞
i=1 Eγi

for some countable subcollection {γi} ⊆ N.

While measure-theoretic unions themselves are known
(cf. Silva (2008), Rudin (1991)), for completeness, we in-
clude a proof of their existence, which, to the best of our
knowledge, is not found in the literature.

Lemma E.14. Let µ be a finite positive measure on a mea-
sure space (V,M). Then an arbitrary collection {Eγ}γ∈Γ

of µ-measurable sets has a measure-theoretic union.

Proof. For each countable subcollection Γ′ ⊆ Γ, consider

the “error term”

r(Γ′) = sup
γ∈Γ

µ

Eγ \
⋃

γ′∈Γ′

Eγ′


We claim that the infimum of r(Γ′) over all countable sub-
collections Γ′ ⊆ Γ must be zero.

For, toward a contradiction, suppose it were greater than or
equal to ϵ > 0. Choose any set Eγ1

such that µ[Eγ1
] ≥ ϵ.

Such a set must exist, since otherwise r(∅) < ϵ. Choose
Eγ2

such that µ[Eγ2
\Eγ1

] > ϵ. Again, some such set must
exist, since otherwise r({γ1}) < ϵ. Continuing in this way,
we construct a countable collection {Eγi}i∈N.

Therefore, we see that

µ[V ] ≥ µ

[
n⋃

i=1

Eγi

]
=

n∑
i=1

µ

Eγi \
i⋃

j=1

Eγj

 .

By construction, every term in the final sum is greater than
or equal to ϵ, contradicting the fact that µ[V ] <∞.

Therefore, there exist countable collections {Γn}n∈N such
that r(Γn) <

1
n . It follows immediately that for all n

r

(⋃
n∈N

Γn

)
≤ r(Γk)

for any fixed k ∈ N. Consequently,

r

(⋃
n∈N

Γn

)
= 0,

and
⋃

n∈N Γn is countable.

The construction of the “maximal” elements used to con-
struct the probe in the proof of Theorem 1 follows as a
corollary of Lemma E.14

Corollary E.3. There are measures µmax,a ∈ Q such that
for every a ∈ A and any µ ∈ K,

λ[SUPP(fµ,a) \ SUPP(fµmax,a)] = 0.

Proof. Consider the collection {SUPP(fµ,a)}µ∈K. By
Lemma E.14, there exists a countable collection of mea-
sures {µi}i∈N such that for any µ ∈ K,

λ

[
SUPP(fµ,a) \

∞⋃
i=1

SUPP(fµi,a)

]
= 0,

where, without loss of generality, we may assume that
λ[SUPP(fµi,a)] > 0 for all i ∈ N. Such a sequence must
exist, since, by the first hypothesis of Theorem 1, for every
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a ∈ A, there exists µ ∈ Q such that Prµ(A = a) > 0.
Therefore, we can define the probability measure µmax,a,
where

µmax,a =

n∑
i=1

2−i · |µi ↾A=a|
|µi ↾A=a| [K]

.

It follows immediately by construction that

SUPP(fµmax,a) =

∞⋃
i=1

SUPP(fµi,a),

and that µmax,a ∈ Q.

For notational simplicity, we refer to SUPP(fµmax,a) as Sa

throughout.

In the case of conditional principal fairness and path-specific
fairness, we need a mild refinement of the previous result
that accounts for ω.

Corollary E.4. There are measures µmax,a,w ∈ Q defined
for every w ∈ W = IMG(ω) and any a ∈ A such that for
some ν ∈ K, Prν(W = w,A = a) > 0. These measures
have the property that for any µ ∈ K,

λ[SUPP(fµ′,a,w) \ SUPP(fµmax,a,w)] = 0,

where fµ′,a,w is the density of the pushforward measure
(µ′ ↾W=w,A=a) ◦ u−1.

Recalling that | IMG(ω)| < ∞, the proof is the same as
Cor. E.3, and we analogously refer to SUPP(fµmax,a,w

) as
Sa,w. Here, we have assumed without loss of generality—as
we continue to assume in the sequel—that for all w ∈ W ,
there is some µ ∈ K such that Prµ(W = w) > 0.
Remark 6. Because their support is maximal, the hypotheses
of Theorem 1, in addition to implying that µmax,a is well-
defined for all a ∈ A, also imply that Prµmax,a

(u(X) >
0) > 0. In the case of conditional principal fairness, they
further imply that Prµmax,a(W = w) > 0 for all w ∈ W
and a ∈ A. Likewise, in the case of path-specific fairness,
they further imply that Prµmax,a

(W = wi) > 0 for i = 0, 1
and some a ∈ A.

E.4.2. SHY SETS AND PROBES

In the following lemmata, we demonstrate that a number of
useful properties are generic in Q. We also demonstrate a
short technical lemma, Lemma E.20, which allows us to use
these generic properties to simplify the proof of Theorem 1.

We begin with the following lemma, which is useful in
verifying that certain subspaces of K form probes.

Lemma E.15. Let W be a non-trivial finite dimensional
subspace of K such that ν[K] = 0 for all ν ∈ W. Then,
there exists µ ∈ K such that λW[Q− µ] > 0.

Proof. Set

µ =

n∑
i=1

|νi|
|νi|[K]

,

where ν1, . . . , νn form a basis of W. Then, if |βi| ≤ 1
|νi|[K] ,

it follows that

µ+

n∑
i=1

βi · νi ∈ Q.

Since

λn

[
n∏

i=1

[
− 1

|νi|[K]
,

1

|νi|[K]

]]
> 0,

it follows that λW[Q− µ] > 0.

Next we show that, given a ν ∈ Q, a generic element of Q
“sees” events to which ν assigns non-zero probability. While
Lemma E.18 alone in principle suffices for the proof of The-
orem 1, we include Lemma E.16 both for conceptual clarity
and to introduce at a high level the style of argument used
in the subsequent lemmata and in the proof of Theorem 1 to
show that a set is shy relative to Q.

Lemma E.16. For a Borel set E ⊆ K, suppose there exists
ν ∈ Q such that ν[E] > 0. Then the set of µ ∈ Q such that
µ[E] > 0 is prevalent.

Proof. First, we note that the set of µ ∈ Q such that µ[E] =
0 is closed and therefore universally measurable. For, if
{µi}i∈N ⊆ Q is a convergent sequence with limit µ, then

µ[E] = lim
n→∞

µi[E]

= lim
n→∞

0

= 0.

Now, if µ[E] > 0 for all µ ∈ Q, there is nothing to
prove. Therefore, suppose that there exists ν′ ∈ Q such that
ν′[E] = 0.

Next, consider the measure ν̃ = ν′ − ν. Then, let W =
SPAN(ν̃). Since ν̃ ̸= 0 and

ν̃[K] = ν′[K]− ν[K] = 0,

it follows by Lemma E.15 that λW[Q− µ] > 0 for some µ.

Now, for arbitrary µ ∈ Q, note that if (µ+ β · ν̃)[E] = 0,
then

µ[E]− β · ν[E] = 0

i.e.,

β =
µ[E]

ν[E]
.

A singleton has null Lebesgue measure, and so the set of
ν ∈W such that (µ + ν)[E] = 0 is λW-null. Therefore,
by Prop. E.6, the set of µ ∈ Q such that µ[E] = 0 is shy
relative to Q, as desired.
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While Lemma E.16 shows that a typical element of Q “sees”
individual events, in the proof of Theorem 1, we require
a stronger condition, namely, that a typical element of Q
“sees” certain uncountable collections of events. To demon-
strate this more complex property, we require the following
technical result, which is closely related to the real analysis
folk theorem that any convergent uncountable “sum” can
contain only countably many non-zero terms. (See, e.g.,
Benji (2020).)

Lemma E.17. Suppose µ is a totally bounded measure on
(V,M), f and g are µ-measurable real-valued functions,
and g ̸= 0 µ-a.e. Then the set

Zβ = {v ∈ V : f(v) + β · g(v) = 0}

has non-zero µ measure for at most countably many β ∈ R.

Proof. First, we show that for any countable collection
{βi}i∈N ⊆ R, the sum

∑∞
i=1 µ[Zβi

] converges. Then, we
show how this implies that µ[Zβ ] = 0 for all but countably
many β ∈ R.

First, we note that for distinct β, β′ ∈ R,

Zβ ∩ Zβ′ ⊆ {v ∈ V : (β − β′) · g(v) = 0}.

Now, by hypothesis,

µ[{v ∈ V : g(v) = 0}] = 0,

and since β − β′ ̸= 0, it follows that

µ[{v ∈ V : (β − β′) · g(v) = 0}] = 0

as well. Consequently, it follows that if {Zβi
}i∈N is a count-

able collection of distinct elements of R, then

∞∑
i=1

µ[Zβi ] = µ

[ ∞⋃
i=1

Zβi

]
≤ µ[V ]

<∞.

To see that this implies that µ[Zβ ] > 0 for only countably
many β ∈ R, let Gϵ ⊆ R consist of those β such that
µ[Zβ ] ≥ ϵ. Then Gϵ must be finite for all ϵ > 0, since
otherwise we could form a collection {βi}i∈N ⊆ Gϵ, in
which case

∞∑
i=1

µ[Zβi
] ≥

∞∑
i=1

ϵ =∞,

contrary to what was just shown. Therefore,

{β ∈ R : µ[Zβ ] > 0} =
∞⋃
i=1

G1/i

is countable.

We now apply Lemma E.17 to the proof of the following
lemma, which states, informally, that, under a generic ele-
ment of Q, u(X) is supported everywhere it is supported
under some particular fixed element of Q. For instance,
Lemma E.17 can be used to show that for a generic element
of Q, the density of u(X) | A = a is positive λ ↾Sa

-a.e.

Lemma E.18. Let ν ∈ Q and suppose ν is supported on
E, i.e., ν[K \ E] = 0. Then the set of µ ∈ Q such that
ν ◦ u−1 Î (µ ↾E) ◦ u−1 is prevalent relative to Q.

Lemma E.18 states, informally, that for generic µ ∈ Q,
fµ ↾E is supported everywhere fν is supported.

Proof. We begin by showing that the set of µ ∈ Q such that
ν ◦ u−1 Î (µ ↾E) ◦ u−1 is Borel, and therefore universally
measurable. Then, we construct a probe W and use it to
show that this collection is finitely shy.

To begin, let Uq denote the set of µ ∈ Q such that

ν ◦ u−1[{|fµ ↾E | = 0}] < q.

We note that Uq is open. For, if µ ∈ Uq, then there exists
some r > 0 such that

ν ◦ u−1[{|fµ ↾E | < r}] < q.

Let
ϵ = q − ν ◦ u−1[{|fµ ↾E | < r}].

Now, since ν◦u−1 Î λ, there exists a δ such that if λ[E′] <
δ, then ν ◦ u−1[E′] < ϵ. Choose µ′ arbitrarily so that
|µ− µ′|[K] < δ · r. Then, by Markov’s inequality, we have
that

λ[{|fµ ↾E − fµ′ ↾E | > r}] < δ,

i.e.,
ν ◦ u−1[{fµ ↾E − fµ′ ↾E | > r}] < ϵ.

Now, we note that by the triangle inequality, wherever
|fµ′ ↾E | = 0, either |fµ ↾E | < r or |fµ ↾E − fµ′ ↾E | > r.
Therefore

λ[{|fµ′ ↾E | = 0}] ≤ ν ◦ u−1[{|fµ ↾E − fµ′ ↾E | > r}]
+ µ ◦ u−1[{|fµ ↾E | < r]

< ϵ+ µ ◦ u−1[{|fµ ↾E | < r]

< q.

We conclude that µ′ ∈ Uq , and so Uq is open.

Note that ν ◦ u−1 Î (µ ↾E) ◦ u−1 if and only if

λ[SUPP(fν) \ SUPP(fµ ↾E )] = 0.

By the definition of the support of a function, λ ↾SUPP(fµ) Î

µ ◦ u−1. Therefore, it follows that

λ[SUPP(fµ) \ SUPP(fν ↾E )] = 0
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if and only if

µ ◦ u−1[SUPP(fµ) \ SUPP(fν ↾E )] = 0.

Then, it follows immediately that the set of ν ∈ Q such
that µ ◦ u−1 Î (ν ↾E) ◦ u−1 is

⋂n
i=1 U1/i, which is, by

construction, Borel, and therefore universally measurable.

Now, since

Prν(u(X) < t) =

∫ t

−∞
fν dλ

is a continuous function of t, by the intermediate value
theorem, there exists t such that Prν(u(X) ∈ S0) =
Prν(u(X) ∈ S1), where S0 = SUPP(fν) ∩ (−∞, t) and
S1 = SUPP(fν) ∩ [t,∞). Then, we let

ν̃[E′] =

∫
E′

1u−1(S0) − 1u−1(S1) dν.

Take W = SPAN(ν̃). Since ν̃ ̸= 0 and ν̃[K] = 0, we have
by Lemma E.15 that λW[Q− µ] > 0 for some µ.

By the definition of a density, fν̃ is positive (ν̃ ◦ u−1)-
a.e. Consequently, by the definition of ν̃, fν̃ is non-zero
(µ ◦ u−1)-a.e. Therefore, by Lemma E.17, there exist only
countably many β ∈ R such that the density of (µ+ β · ν̃) ◦
u−1 equals zero on a set of positive µ ◦u−1-measure. Since
countable sets have λ-measure zero and ν is arbitrary, the
set of µ ∈ Q such that ν ◦ u−1 Î (µ ↾E) ◦ u−1 is prevalent
relative to Q by Prop. E.6.

The following definition and technical lemma are needed
to extend Theorem 1 to the cases of conditional principal
fairness and path-specific fairness, which involve additional
conditioning on W = ω(X). In particular, one corner case
we wish to avoid in the proof of Theorem 1 is when the
decision policy is non-trivial (i.e., some individuals receive
a positive decision and others do not) but from the perspec-
tive of each ω-stratum, the policy is trivial (i.e., everyone in
the stratum receives a positive or negative decision). Defini-
tion E.12 formalizes this pathology, and Lemma E.19 shows
that this issue—under a mild hypothesis—does not arise for
a generic element of Q.

Definition E.12. We say that µ ∈ Q overlaps utilities when,
for any budget-exhausting multiple threshold policy τ(x), if

0 < Eµ[τ(X)] < 1,

then there exists w ∈ W such that

0 < Eµ[τ(X) |W = w] < 1.

If there exists a budget-exhausting multiple threshold policy
τ(x) such that

0 < Eµ[τ(X)] < 1,

but for all w ∈ W ,

Eµ[τ(X) |W = w] ∈ {0, 1},

then we say that τ(x) splits utilities over µ.

Informally, having overlapped utilities prevents a budget-
exhausting threshold policy from having thresholds that fall
on the utility scale exactly between the strata induced by
ω—i.e., a threshold policy that splits utilities. This is almost
a generic condition in Q, as we shown in Lemma E.19.

Lemma E.19. Let 0 < b < 1. Suppose that for all w ∈ W
there exists µ ∈ Q such that Prµ(u(X) > 0,W = w) > 0.
Then almost every µ ∈ Q overlaps utilities.

Proof. Our goal is to show that the set E′ of measures
µ ∈ Q such that there exists a splitting policy τ(x) is shy.
To simplify the proof, we divide an conquer, showing that
the set EΓ of measures µ ∈ Q such that there exists a
splitting policy where the thresholds fall below w ∈ Γ ⊆ W
and above w /∈ Γ is Borel, before constructing a probe that
shows that it is shy. Then, we argue that E′ =

⋃
Γ⊆W EΓ,

which shows that E′ is shy.

We begin by considering the linear map Φ : K→ R× RW

given by

Φ(µ) =
(
Prµ(u(X) = 0), (Prµ(W = w))w∈W

)
.

For any Γ ⊆ W , the sets

FUp
Γ = {x ∈ R× RW : x0 ≥ b, b =

∑
w∈Γ

xw},

FLo
Γ = {x ∈ R× RW : x0 ≤ b, x0 =

∑
w∈Γ

xw},

are closed by construction. Therefore, since Φ is continuous,

EΓ = Q ∩ Φ−1

 ⋃
Γ⊆W

FUp
Γ ∪ FLo

Γ

 (16)

is closed, and therefore universally measurable.

Note that by our hypothesis and Cor. E.4, for all w ∈ W
there exists some aw ∈ A such that

Prµmax,aw,w
(u(X) > 0).

We use this to show that EΓ is shy. Pick w∗ ∈ W arbitrarily,
and consider the measures νw for w ̸= w∗ defined by

νw =
µmax,aw,w ↾u(X)>0

Prµmax,aw,w
(u(X) > 0)

−
µmax,aw∗ ,w∗ ↾u(X)>0

Prµmax,aw∗ ,w∗ (u(X) > 0)
.
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We note that νw[K] = 0 by construction. Therefore, if
Ww = SPAN(νw), then λWw [Q − µw] > 0 for some µw

by Lemma E.15.

Moreover, we have that Prν(u(X) > 0) = 0 for all ν ∈
Ww, i.e.,

Prµ(u(X) > 0) = Prµ+ν(u(X) > 0).

Now, since 0 < b < 1 and ω partitions X , it follows that

EW = E∅ = ∅.

Since λW[∅] = 0 for any subspace W, we can assume
without loss of generality that Γ ̸=W, ∅.

In that case, there exists wΓ ∈ W such that if w∗ ∈ Γ, then
wΓ /∈ Γ, and vice versa. Without loss of generality, assume
wΓ ∈ Γ and w∗ /∈ Γ. It then follows that for arbitrary
µ ∈ Q,

Φ(µ+ β · νwΓ
) = Φ(µ) + β · ewΓ

− β · ew∗ ,

where ew is the basis vector corresponding to w ∈ W . From
this, it follows immediately by Eq. (E.4.2) that

µ+ β · νwΓ
∈ EΓ

only if

β = min(b,Prµ(u(X) > 0))−
∑
w∈Γ

Prµ(W = w).

This is a measure zero subset of R, and so it follows that

λWwΓ
[EΓ − µ] = 0

for all µ ∈ K. Therefore, by Prop. E.6, EΓ is shy in Q.
Taking the union over Γ ⊆ W , it follows by Prop. E.5 that⋃

Γ⊆W EΓ is shy.

Now, we must show that E′ =
⋃

Γ⊆W EΓ. By construc-
tion, EΓ ⊆ E′, since the policy τ(x) = 1ω(x)∈Γ is budget-
exhausting and separates utilities. To see the reverse in-
clusion, suppose µ ∈ E′, i.e., that there exists a budget-
exhausting multiple threshold policy τ(x) that splits utilities
over µ. Then, let

Γµ = {w ∈ W : Eµ[τ(X) |W = w] = 1}.

Since τ(x) is budget-exhausting, it follows immediately that
µ ∈ EΓµ . Therefore, E′ =

⋃
Γ⊆W EΓ, and so E′ is shy, as

desired.

We conclude our discussion of shyness and shy sets with the
following general lemma, which simplifies relative preva-
lence proofs by showing that one can, without loss of gener-
ality, restrict one’s attention to the elements of the shy set
itself in applying Prop. E.6.

Lemma E.20. Suppose E is a universally measurable sub-
set of a convex, completely metrizable set C in a topological
vector space V . Suppose that for some finite-dimensional
subpace V ′, λV ′ [C + v0] > 0 for some v0 ∈ V . If, in
addition, for all v ∈ E,

λV ′ [{v′ ∈ V ′ : v + v′ ∈ E}] = 0, (17)

then it follows that E is shy relative to C.

Proof. Let v be arbitrary. Then, either (v + V ′) ∩ E is
empty or not.

First, suppose it is empty. Since λV ′ [∅] = 0 by definition, it
follows immediately that in this case λV ′ [E − v] = 0.

Next, suppose the intersection is not empty, and let v+v∗ ∈
E for some fixed v∗ ∈ V ′. It follows that

λV ′ [E − v] = λV ′ [{v′ ∈ V ′ : v + v′ ∈ E}]
= λV ′ [{v′ ∈ V ′ : (v + v∗) + v′ ∈ E}]
= 0,

where the first equality follows by definition; the second
equality follows by the translation invariance of λV ′ , and
the fact that v∗ + V ′ = V ′; and the final inequality follows
from Eq. (17).

Therefore λV ′ [E − v] = 0 for arbitrary v, and so E is
shy.

E.5. Proof of Theorem 1

Using the lemmata above, we can prove Theorem 1. We
briefly summarize what has been established so far:

• Lemma E.7: The set K of U-fine distributions on K
is a Banach space;

• Lemma E.11: The subset Q of U-fine probability
measures on K is a convex, completely metrizable
subset of K;

• Lemma E.13: The subset E of Q is a universally
measurable subset of K, where E is the set consisting
of U -fine probability measures over which there exists
a policy satisfying counterfactual equalized odds (resp.,
conditional principal fairness, or path-specific fairness)
that is not strongly Pareto dominated.

Therefore, to apply Prop. E.6, it follows that what remains
is to construct a probe W and show that λW[Q+ µ0] > 0
for some µ0 ∈ K but λW[E+ µ] = 0 for all µ ∈ K.

Proof. We divide the proof into three pieces. First, we
illustrate how to construct the probe W from a particu-
lar collection of distributions {νUp

a , νLoa }a∈A. Second, we
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show that λW[E+µ] = 0 for all µ ∈ K. For notational and
expository simplicity, we focus in these first two sections
on the case of counterfactual equalized odds. Therefore, in
the third section, we show how to generalize the argument
to conditional principal fairness and path-specific fairness.

Construction of the probe We will construct our probe
to address two different cases. We recall that, by Cor. D.1,
any policy that is not strongly Pareto dominated must be
a budget-exhausting multiple threshold policy with non-
negative thresholds. In the first case, we consider when
the candidate budget-exhausting multiple threshold policy
is 1u(x)>0. By perturbing the underlying distribution by
ν ∈ WLo, we will be able to break the balance require-
ments implied by Eq. (2). In the second case, we treat the
possibility that the candidate budget-exhausting multiple
threshold policy has a non-trivial positive threshold for at
least one group. By perturbing the underlying distribution
by ν ∈WUp for an alternative set of perturbations WUp,
we will again be able to break the balance requirements.

More specifically, to construct our probe W = WUp +
WLo, we want WUp and WLo to have a number of proper-
ties. In particular, for all ν ∈W, perturbation by ν should
not affect whether the underlying distribution is a probability
distribution, and should not affect how much of the budget
is available to budget-exhausting policies. Specifically, for
all ν ∈W, ∫

K
1 dν = 0, (18)

and ∫
K

1u(X)>0 dν = 0. (19)

In fact, the amount of budget available to budget-exhausting
policies will not change within group, i.e., for all a ∈ A and
ν ∈W, ∫

K
1u(X)>0,A=a dν = 0. (20)

Additionally, for some distinguished y0, y1 ∈ Y , non-zero
perturbations in νLo ∈ WLo should move mass between
y0 and y1. That is, they should have the property that if
Pr|νLo|(A = a) > 0, then∫

K
1u(X)<0,Y=yi,A=a dν

Lo ̸= 0. (21)

Finally, perturbations in WUp should have the property that
for any non-trivial t > 0, some mass is moved either above
or below t > 0. More precisely, for any µ ∈ Q and any t
such that

0 < Prµ(u(X) > t | A = a) < 1,

if νUp ∈WUp is such that Pr|νUp|(A = a) > 0, then∫
K

1u(X)>t,A=a dν
Up ̸= 0. (22)

To carry out the construction, choose distinct y0, y1 ∈ Y .
Then, since

µmax,a ◦ u−1[Sa ∩ [0, ra)]− µmax,a ◦ u−1[Sa ∩ [ra,∞)]

is a continuous function of ra, it follows by the intermediate
value theorem that we can partition Sa into three pieces,

SLo
a = Sa ∩ (−∞, 0),

SUp
a,0 = Sa ∩ [0, ra),

SUp
a,1 = Sa ∩ [ra,∞),

so that

Prµmax,a

(
u(X) ∈ SUp

a,0

)
= Prµmax,a

(
u(X) ∈ SUp

a,1

)
.

Recall thatK = X ×Y . Let πX : K → X denote projection
onto X , and γy : X → K be the injection x 7→ (x, y). We
define

νUp
a [E] = µmax,a ◦ (γy1 ◦ πX )−1

[
E ∩ u−1

(
SUp
a,1

)]
,

− µmax,a ◦ (γy1 ◦ πX )−1
[
E ∩ u−1

(
SUp
a,0

)]
,

νLoa [E] = µmax,a ◦ (γy1
◦ πX )−1

[
E ∩ u−1

(
SLo
a

)]
− µmax,a ◦ (γy0

◦ πX )−1
[
E ∩ u−1

(
SLo
a

)]
.

By construction, νUp
a concentrates on

{y1} × u−1(Sa ∩ [0,∞)),

while νLoa concentrates on

{y0, y1} × u−1(Sa ∩ (−∞, 0)).

Moreover, if we set

WUp = SPAN(νUp
a )a∈A,

WLo = SPAN(νLoa )a∈A,

then it is easy to see that Eqs. (18) to (21) will hold. The
only non-trivial case is Eq. (22). However, by Cor. E.3, the
support of fµmax,a

is maximal. That is, for µ ∈ Q, if

0 < Prµ(u(X) > t | A = a, u(X) > 0) < 1,

then it follows that 0 < t < supSa. Either t ≤ ra or t > ra.
First, assume t ≤ ra; then, it follows by the construction of
νUp
a that

νUp
a ◦ u−1[(t,∞)] =

∫ ∞

ra

fmax,a dλ

−
∫ ra

t

fmax,a dλ

>

∫ ∞

ra

fmax,a dλ

−
∫ ra

0

fmax,a dλ

= 0.
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Similarly, if t > ra,

νUp
a ◦ u−1[(t,∞)] =

∫ ∞

t

fmax,a dλ

>

∫ ∞

supSa

fmax,a dλ

= 0.

Therefore Eq. (22) holds.

Since W is non-trivial18 and ν[K] = 0 for all ν ∈ W, it
follows by Lemma E.15 that λW[Q − µ] > 0 for some
µ ∈ K.

Shyness Recall that, by Prop. E.5, a set E is shy if
and only if, for an arbitrary shy set E′, E \ E′ is shy.
By Lemma E.16, a generic element of µ ∈ Q satisfies
Prµ(u(X) > 0, Y (1) = yi, A = a) > 0 for i = 0, 1, and
a ∈ A. Likewise, by Lemma E.18, a generic µ ∈ Q satisfies
νUp
a ◦u−1 Î (µ ↾X×{y1}) ◦u

−1. Therefore, to simplify our
task and recalling Remark 6, we may instead demonstrate
the shyness of the set of µ ∈ Q such that:

• There exists a budget-exhausting multiple threshold
policy τ(x) with non-negative thresholds satisfying
counterfactual equalized odds over µ;

• For i = 0, 1,

Prµ(u(X) > 0, A = a, Y (1) = yi) > 0; (23)

• For all a ∈ A,

νUp
a ◦ u−1 Î (µ ↾α−1(a)×{y1}) ◦ u

−1. (24)

By a slight abuse of notation, we continue to refer to this set
as E. We note that, by the construction of W, Eq. (23) is
not affected by perturbation by ν ∈W, and Eq. (24) is not
affected by perturbation by νLo ∈W.

In particular, by Lemma E.20, it suffices to show that
λW[E− µ] = 0 for µ ∈ E.

Therefore, let µ ∈ E be arbitrary. Let the budget-exhausting
multiple threshold policy satisfying counterfactual equalized
odds over it be τ(x), so that

Eµ[τ(X)] = min(b,Prµ(u(X) > 0)),

with thresholds {ta}a∈A. We split into two cases based on
whether τ(X) = 1u(X)>0 µ-a.s. or not.

18In general, some or all of the νLo may be zero depending on
the λ-measure of SLo

a . However, as noted in Remark 6, the νUp
a,i

cannot be zero, since Prµmax,a(u(X) > 0) > 0 for all a ∈ A.
Therefore W ̸= {0}.

In both cases, we make use of the following two useful
observations.

First, note that as E ⊆ Q, if µ+ ν is not a probability mea-
sure, then µ+ ν /∈ E. Therefore, without loss of generality,
we assume throughout that µ+ ν is a probability measure.

Second, suppose τ ′(x) is a policy satisfying counterfac-
tual equalized odds over some ν ∈ Q. Then, if 0 <
Eµ[τ

′(X)] < 1, it follows that for all a ∈ A,

0 < Eµ[τ
′(X) | A = a] < 1. (25)

For, suppose not. Then, without loss of generality, there
must be a0, a1 ∈ A such that

Eµ[τ
′(X) | A = a0] = 0

and
Eµ[τ

′(X) | A = a1] > 0.

But then, by the law of iterated expectation, there must be
some Y ′ ⊆ Y such that µ[X × Y ′] > 0 and so,

1X×Y′ · Eµ[τ
′(X) | A = a1, Y (1)]

> 0

= 1X×Y′ · Eµ[τ
′(X) | A = a0, Y (1)],

contradicting the fact that τ ′(x) satisfies counterfactual
equalized odds over µ. Therefore, in what follows, we
can assume that Eq. (25) holds.

Our goal is to show that λW[E− µ] = 0.
Case 1 (τ(X) = 1u(X)>0). We argue as follows. First, we
show that 1u(X)>0 is the unique budget-exhausting multiple
threshold policy with non-negative thresholds over µ+ν for
all ν ∈W. Then, we show that the set of ν ∈W such that
1u(x)>0 satisfies counterfactual equalized odds over µ+ ν
is a λW-null set.

We begin by observing that WLo ̸= {0}. For, if that were
the case, then Eq. (25) would not hold for τ(x).

Next, we note that by Eq. (19), for any ν ∈W,

Prµ+ν(u(X) > 0) = Prµ(u(X) > 0)

and so

Eµ+ν [1u(X)>0] = min(b,Prµ+ν(u(X) > 0)).

If τ ′(x) is a feasible multiple threshold policy with non-
negative thresholds and τ ′(X) ̸= 1u(X)>0 (µ + ν)-a.s.,
then, as a consequence,

Eµ+ν [τ
′(X)] < Prµ+ν(u(X) > 0) ≤ b.

Therefore, it follows that 1u(X)>0 is the unique budget-
exhausting multiple threshold policy over µ+ ν with non-
negative thresholds.
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Now, note that if counterfactual equalized odds holds with
decision policy τ(x) = 1u(x)>0, then, by Eq. (4) and
Lemma E.6, we must have that

Prµ+ν(u(X) > 0 | A = a, Y (1) = y1)

= Prµ+ν(u(X) > 0 | A = a′, Y (1) = y1)

for a, a′ ∈ A.19

Now, we will show that a typical element of W breaks this
balance requirement. Choose a∗ such that νLoa∗ ̸= 0. Recall
that ν is fixed, and let ν′ = ν − βLo

a∗ · νLoa∗ . Let

pa = Prµ+ν′(u(X) > 0 | A = a′, Y (1) = y1).

Note that it cannot be the case that pa = 0 for all a ∈ A,
since, by Eq. (23),

Prµ+ν′(u(X) > 0 | Y (1) = y1) > 0.

Therefore, by the foregoing discussion, either pa∗ > 0 or
pa∗ = 0 and we can choose a′ ∈ A such that pa′ > 0.
Since the νLoa , νUp

a,i are all mutually singular, it follows that
counterfactual equalized odds can only hold over µ+ ν if

pa′ = Prµ+ν(u(X) > 0 | A = a∗, Y (1) = y1).

Now, we observe that by Lemma E.6, that

Prµ+ν(u(X) > 0 | A = a∗, Y (1) = y1) =
η

π + βLo
a∗ · ρ

where

η = Prµ(u(X) > 0, A = a∗, Y (1) = y1)

π = Prµ(A = a∗, Y (1) = y1),

ρ =

∫
K

1A=a∗,Y (1)=y1
dνLoa∗ .

since

0 =

∫
K

1u(X)>0,A=a∗,Y (1)=y1
dνLoa∗ ,

0 ̸=
∫
K

1A=a∗,Y (1)=y1
dνLoa∗ .

Here, the equality follows by the fact that νLo is supported
on SLo

a × {y0, y1} and the inequality from Eq. (21).

Therefore, if, in the first case, pa′ > 0, then counterfactual
equalized odds only holds if

βLo
a∗ =

e− pa′ · π
pa′ · ρ

,

19To ensure that both quantities are well-defined, here and
throughout the remainder of the proof we use the fact that by
Eqs. (20) and (23), Prµ+ν(u(X) > 0, A = a, Y (1) = y1) > 0.

since, as noted above, ρ ̸= 0 by Eq. (21). In the second case,
if pa′ = 0, then counterfactual equalized odds can only hold
if

e = pa∗ · π = 0.

Since we chose a′ so that pa∗ > 0 if pa′ = 0 and π > 0 by
Eq. (23), this is impossible.

In either case, we see that the set of βLo
a∗ ∈ R such that

there a budget-exhausting threshold policy with positive
thresholds satisfying counterfactual equalized odds over
µ+ ν′ + βLo

a∗ · νLoa∗ has λ-measure zero. That is

λSPAN(νLo
a∗ )

[E− µ− ν′] = 0.

Since ν′ was arbitrary, it follows by Fubini’s theorem that
λW[E− µ] = 0.

Case 2 (τ(X) ̸= 1u(X)>0). Our proof strategy is similar
to the previous case. First, we show that, for a given fixed
νLo ∈ WLo, there is a unique candidate policy τ̃(x) for
being a budget-exhausting multiple threshold policy with
non-negative thresholds and satisfying counterfactual equal-
ized odds over µ+ νLo + νUp for any νUp ∈WUp. Then,
we show that the set of νUp such that τ̃(X) satisfies coun-
terfactual equalized odds has λWUp measure zero. Finally,
we argue that this in turn implies that the set of ν ∈ W
such that there exists a Pareto efficient policy satisfying
counterfactual equalized odds over µ+ ν has λW-measure
zero.

We seek to show that λWUp [E− (µ+ νLo)] = 0. To begin,
we note that since νUp

a,i concentrates on {y1} × X for all
a ∈ A, it follows that

Eµ+νLo [d(X) | A = a, Y (1) = y0]

= Eµ+νLo+νUp [d(X) | A = a, Y (1) = y0]

for any νUp ∈WUp.

Now, suppose there exists some νUp ∈ WUp such that
there exists a budget-exhausting multiple threshold policy
τ̃(x) with non-negative thresholds such that counterfactual
equalized odds is satisfied over µ+ νLo + νUp. (If not, then
we are done and λWUp [E− (µ+ νLo)] = 0, as the measure
of the empty set is zero.) Let

p = Eµ+νLo [τ̃(X) | A = a, Y (1) = y0].

Suppose that τ̃ ′(x) is an alternative budget-exhausting mul-
tiple threshold policy with non-negative thresholds such
that counterfactual equalized odds is satisfied. We seek to
show that τ ′(X) = τ(X) (µ + νLo + νUp)-a.e. for any
νUp ∈ WUp. Toward a contradiction, suppose that for
some a0 ∈ A,

Eµ+νLo [τ̃ ′(X) | A = a0, Y (1) = y0] < p.
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Since, by Eq. (23), Prµ+νLo(A = a0, Y (1) = y0) > 0, it
follows that

Eµ+νLo [τ̃ ′(X) | A = a0] < Eµ+νLo [τ̃(X) | A = a0].

Therefore, since τ̃(x)′ is budget exhausting, there must be
some a1 such that

Eµ+νLo [τ̃ ′(X) | A = a1] > Eµ+νLo [τ̃(X) | A = a1].

From this, it follows τ̃ ′(x) can be represented by a threshold
greater than or equal to that of τ̃(x) on α−1(a1), and hence

Eµ+νLo [τ̃ ′(X) | A = a1, Y (1) = y0]

≥ Eµ+νLo [τ̃(X) | A = a0, Y (1) = y0]

= p

> Eµ+νLo [τ̃ ′(X) | A = a0, Y (1) = y0],

contradicting the fact that τ̃ ′(x) satisfies counterfactual
equalized odds.

By the preceding discussion, Lemma E.10, and the fact that
νLo is supported on u−1((−∞, 0]),

τ̃(X) = τ̃ ′(X) (µ ↾X×{y0})-a.e.

By Eq. (24), it follows that τ̃(X) = τ̃ ′(X) νUp
a,i -a.e. for

i = 0, 1. As a consequence,

τ̃(X) = τ̃ ′(X) (µ+ νLo + νup)-a.e.

for all νUp ∈WUp. Therefore τ̃(X) is, indeed, unique, as
desired.

Now, we note that since τ(X) ̸= 1u(X)>0, it follows that
E[τ(X)] < Prµ(u(X) > 0). It follows that Eµ[τ(X)] = b,
since τ(x) is budget exhausting. Therefore, by Eq. (19),
it follows that for any budget-exhausting policy τ̃(X),
E[τ̃(X)] = b, and so τ̃(X) ̸= 1u(X)>0 over µ+ ν.

Therefore, fix νLo and τ̃(X). By Eq. (25), there is some a∗

such that

0 < Prµ+νLo(u(X) > t̃a∗ | A = a∗) < 1.

Then, it follows by Eq. (22) that∫
K

1u(X)>t̃a∗ dν
Up
a∗ ̸= 0.

Fix ν′ = ν − βUp
a∗ · νUp

a∗ . Then, for some a ̸= a∗, set

p∗ = Eµ+ν′ [τ̃(X) | A = a, Y (1) = y1].

Since the νLoa , νUp
a are all mutually singular, it follows that

counterfactual equalized odds can only hold over µ+ ν if

p∗ = Prµ+ν(u(X) > t̃a∗ | A = a∗, Y (1) = y1).

Now, we observe that by Lemma E.6, that

Prµ+ν(u(X) > t̃a∗ | A = a∗, Y (1) = y1)

=
η + βUp

a · γ
π

(26)

where

η = Prµ+νLo(u(X) > t̃a∗ | A = a∗, Y (1) = y1),

π = Prµ+νLo(A = a∗, Y (1) = y1),

γ =

∫
K

1u(X)>t̃a∗ ,A=a∗,Y (1)=y1
dνUp

a ,

and we note that

0 =

∫
K

1A=a∗,Y (1)=y1
dνLoa .

Eq. (26) can be rearranged to

(p∗ · π − η)− β · γ = 0.

This can only hold if

β =
p∗ · π − η

γ
,

since by Eq. (22), γ ̸= 0. Since any countable subset of R
is a λ-null set,

λSPAN(νUp
a∗ )[E− µ− ν′] = 0.

Since ν′ was arbitrary, it follows by Fubini’s theorem that
λWUp [E− µ− νLo] = 0 in this case as well. Lastly, since
νLo was also arbitrary, applying Fubini’s theorem a final
time gives that λW[E− µ] = 0.

Conditional principal fairness and path-specific fairness
The extension of these results to conditional principal fair-
ness and path-specific fairness is straightforward. All that is
required is a minor modification of the probe.

In the case of conditional principal fairness, we set

νUp
a,w[E] = µmax,a,w ◦ (γ(y1,y1) ◦ πX )−1[E ∩ u−1(SUp

a,1)],

− µmax,a ◦ (γ(y1,y1) ◦ πX )−1[E ∩ u−1(SUp
a,w)],

νLoa,w[E] = µmax,a,w ◦ (γ(y1,y1) ◦ πX )−1[E ∩ u−1(SLo
a )]

− µmax,a ◦ (γ(y0,y0) ◦ πX )−1[E ∩ u−1(SLo
a,w)],

where γ(y,y′) : X → K is the injection x 7→ (x, y, y′). Our
probe is then given by

WUp = SPAN(νUp
a,w),

WLo = SPAN(νLoa,w),

almost as before.
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The proof otherwise proceeds virtually identically, except
for two points. First, recalling Remark 6, we use the fact that
a generic element of Q satisfies Prµ(A = a,W = w) > 0
in place of Prµ(A = a) > 0 throughout. Second, we
use the fact that ω overlaps utility in place of Eq. (25).
In particular, If ω does not overlap utilities for a generic
µ ∈ Q, then, by Lemma E.19, there exists w ∈ W such that
Prµ(u(X) > 0,W = w) = 0 for all µ ∈ Q. If this occurs,
we can show that no budget-exhausting multiple threshold
policy with positive thresholds satisfies conditional principal
fairness, exactly as we did to show Eq. (25).

In the case of path-specific fairness, we instead define

SLo
a,w = Sa,w ∩ (−∞, ra,w),

SUp
a,w = Sa,w ∩ [ra,w,∞),

where ra,w is chosen so that

Prµmax,a,w
(u(X) ∈ SLo

a,w) = Prµmax,a,w
(u(X) ∈ SUp

a,w).

Let πX denote the projection from K = A×XA given by

(a, (xa′)a′∈A) 7→ xa.

Let πa′ denote the projection from the a′-th component.
(That is, given µ ∈ K, the distribution of XΠ,A,a′ over µ
is given by µ ◦ π−1

a′ and the distribution of X is given by
µ ◦π−1

X .) Then, we let µ̃max,a,w be the measure on X given
by

µ̃max,a,w[E] = µmax,a,w[E ∩ (u ◦ πa)
−1(sUp

a,w)]

− µmax,a,w[E ∩ (u ◦ πa)
−1(SLo

a,w)].

Finally, let ϕ : A → A be a permutation of the groups with
no fixed points, i.e., so that a′ ̸= ϕ(a′) for all a′ ∈ A. Then,
we define

νa′ = δa′ × µ̃max,ϕ(a′),w1
×

∏
a ̸=ϕ(a′)

µmax,a,w1
◦ π−1

a ,

where δa is the measure on A given by δa[{a′}] = 1a=a′ .
Then, simply let

W = SPAN(ν′a)a′∈A.

Since µ̃max,a,w[X ] = 0 for all a ∈ A, it follows that νa,w ◦
π−1
X = 0, i.e.,

Prµ(X ∈ E) = Prµ+ν(X ∈ E)

for any ν ∈W and µ ∈ Q. Therefore Eqs. (18) and (19)
hold. Moreover, the νa satisfy the following strengthening
of Eq. (22). Perturbations in W have the property that for
any non-trivial t—not necessarily positive—some of the

mass of u(XΠ,A,a) is moved either above or below t. More
precisely, for any µ ∈ Q and any t such that

0 < Prµ(u(X) > t | A = a) < 1,

if ν ∈W is such that Pr|ν|(A = ϕ−1(a)) > 0, then∫
K

1u(XΠ,A,a)>t dνa ̸= 0. (27)

This stronger property means that we need not separately
treat the case where τ(X) = 1u(X)>0 µ-a.e.

Other than this difference the proof proceeds in the same
way, except for two points. First, we again make use of
the fact that ω can be assumed to overlap utilities in place
of Eq. (25), as in the case of conditional principal fairness.
Second, w0 and w1 take the place of y0 and y1. In particular,
to establish the uniqueness of τ̃(x) given µ and νLo in the
second case, instead of conditioning on y0, we instead con-
dition on w0, where, following the discussion in Remark 6
and Lemma E.16, this conditioning is well-defined for a
generic element of Q.

We have focused on causal definitions of fairness, but the
thrust of our analysis applies to non-causal conceptions of
fairness as well. Below we show that policies constrained
to satisfy (non-counterfactual) equalized odds (Hardt et al.,
2016) are generically strongly Pareto dominated, a result
that follows immediately from our proof above.

Definition E.13. Equalized odds holds for a decision policy
d(x) when

d(X) ⊥⊥ A | Y. (28)

We note that Y in Eq. (28) does not depend on our choice
of d(x), but rather represents the realized value of Y , e.g.,
under some status quo decision making rule.

Corollary E.5. Suppose U is a set of utilities consistent
modulo α. Further suppose that for all a ∈ A there exist
a U-fine distribution of X and a utility u ∈ U such that
Pr(u(X) > 0, A = a) > 0, where A = α(X). Then, for
almost every U -fine distribution of X and Y on X ×Y , any
decision policy d(x) satisfying equalized odds is strongly
Pareto dominated.

Proof. Consider the following maps. Distributions of X and
Y (1), i.e., probability measures onX×Y , can be embedded
in the space of joint distributions on X , Y (0), and Y (1) via
pushing forward by the map ι, where ι : (x, y) 7→ (x, y, y).
Likewise, given a fixed decision policy D = d(X), joint
distributions of X , Y (0), and Y (1) can be projected onto
the space of joint distributions of X and Y by pushing
forward by the map πd : (x, y0, y1) 7→ (x, yd(x)). Lastly,
we see that the composition of ι and πd—regardless of our
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choice of d(x)—is the identity, as shown in the diagram
below.

X × Y X × Y × Y

X × Y

ι

πd
id

We note also that counterfactual equalized odds holds for µ
exactly when equalized odds holds for µ ◦ (πd ◦ ι)−1. The
result follows immediately from this and Theorem 1.

E.6. General Measures on K

Theorem 1 is restricted to U-fine and UA-fine distributions
on the state space. The reason for this restriction is that
when the distribution of X induces atoms on the utility
scale, threshold policies can possess additional—or even
infinite—degrees of freedom when the threshold falls ex-
actly on an atom. In particular circumstances, these degrees
of freedom can be used to ensure causal fairness notions,
such as counterfactual equalized odds, hold in a locally ro-
bust way. In particular, the generalization of Theorem 1
beyond U-fine measures to all totally bounded measures
on the state space is false, as illustrated by the following
proposition.

Proposition E.7. Consider the set E′ ⊆ K of distributions—
not necessarily U -fine—on K = X ×Y over which there ex-
ists a Pareto efficient policy satisfying counterfactual equal-
ized odds. There exist b, X , Y , and U such that E′ is not
relatively shy.

Proof. We adopt the notational conventions of Section E.3.
We note that by Prop. E.5, a set can only be shy if it has
empty interior. Therefore, we will construct an example in
which an open ball of distributions on K in the total varia-
tion norm all allow for a Pareto efficient policy satisfying
counterfactual equalized odds, i.e., are contained in E′.

Let b = 3
4 , Y = {0, 1}, A = {a0, a1}, and X =

{0, 1} × {a0, a1} × R. Let α : X → A be given by
α : (y, a, v) 7→ a for arbitrary (y, a, v) ∈ X . Likewise,
let u : X → R be given by u : (y, a, v) 7→ v. Then,
if U = {u}, U is vacuously consistent modulo α. Con-
sider the joint distribution µ on K = X × Y where for all
y, y′ ∈ Y , a ∈ A, and u ∈ R,

Prµ(X = (a, y, u), Y (1) = y′)

=
1

4
· 1y=y′ · Prµ(u(X) = u),

where, over µ, u(X) is distributed as a 1
2 -mixture of

UNIF(1, 2) and δ(1); that is, Pr(u(X) = 1) = 1
2 and

Pr(a < u(X) < b) = b−a
2 for 0 ≤ a ≤ b < 1.

We first observe that there exists a Pareto efficient thresh-
old policy τ(x) such that counterfactual equalized odds is
satisfied with respect to the decision policy τ(X). Namely,
let

τ(a, y, u) =


1 u > 1,
1
2 u = 1,

0 u < 1.

Then, it immediately follows that E[τ(X)] = 3
4 = b.

Since τ(x) is a threshold policy and exhausts the bud-
get, it is utility maximizing by Lemma D.4. Moreover, if
D = 1UD≤τ(X) for some UD ∼ UNIF(0, 1) independent of
X and Y (1), then D ⊥⊥ A | Y (1). Since u(X) ⊥⊥ A, Y (1),
it follows that

Prµ(D = 1 | A = a, Y (1) = y)

= Pr(UD ≤ τ(X) | A = a, Y (1) = y)

= Pr(UD ≤ τ(X))

= Eµ[τ(X)],

Therefore Eq. (2) is satisfied, i.e., counterfactual equalized
odds holds. Now, using µ, we construct an open ball of
distributions over which we can construct similar threshold
policies. In particular, suppose µ′ is any distribution such
that |µ − µ′|[K] < 1

64 . Then, we claim that there exists a
budget-exhausting threshold policy satisfying counterfactual
equalized odds over µ′. For, we note that

Prµ′(U > 1) < Prµ(U > 1) +
1

64
=

33

64
,

Prµ′(U ≥ 1) > Prµ(U ≥ 1)− 1

64
=

63

64
,

and so any threshold policy τ ′(x) satisfying E[τ ′(X)] =
b = 3

4 must have t = 1 as its threshold.

We will now construct a threshold policy τ ′(x) satisfying
counterfactual equalized odds over µ′. Consider a threshold
policy of the form

τ ′(a, y, u) =


1 u > 1,

pa,y u = 1,

0 u < 1.

For notational simplicity, let

qa,y = Prµ′(A = a, Y = y, U > 1),

ra,y = Prµ′(A = a, Y = y, U = 1),

πa,y = Prµ′(A = a, Y = y).

Then, we have that

Eµ′ [τ ′(X)] =
∑
a,y

qa,y + pa,y · ra,y,

Eµ′ [τ ′(X) | A = a, Y = y] =
qa,y + pa,y · ra,y

πa,y
.
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Therefore, the policy will be budget exhausting if

∑
a,y

qa,y + pa,y · ra,y = 3
4 ,

and it will satisfy counterfactual equalized odds if

πa1,0 · (qa0,0 + pa0,0 · ra0,0)

= πa0,0 · (qa1,0 + pa1,0 · ra1,0),

πa1,1 · (qa0,1 + pa0,1 · ra0,1)

= πa0,1 · (qa1,1 + pa1,1 · ra1,1),

(29)

since, as above,

Pr(D = 1 | A = a, Y (1) = y)

= E[τ ′(X) | A = a, Y (1) = y].

Again, for notational simplicity, let

S =
3
4 − Prµ′(U > 1)

Prµ′(U = 1)
.

Then, a straightforward algebraic manipulation shows that
Eq. (29) is solved by setting pa0,y to be

S · πa0,y · (ra0,y + ra1,y) + πa0,y · qa1,y − πa1,y · qa0,y

ra0,y · (πa0,y + πa1,y)
,

and pa1,y to be

S · πa1,y · (ra0,y + ra1,y) + πa1,y · qa0,y − πa0,y · qa1,y

ra1,y · (πa0,y + πa1,y)
.

In order for τ ′(x) to be a well-defined policy, we need to
show that pa,y ∈ [0, 1] for all a ∈ A and y ∈ Y . To that
end, note that

qa,y = Prµ′(A = a, Y = y, U > 1),

ra,y = Prµ′(A = a, Y = y, U = 1),

πa,y = Prµ′(A = a, Y = y),

ra0,y + ra1,y = Prµ′(Y = y, U = 1),

πa0,y + πa1,y = Prµ′(Y = y),

S =
3
4 − Prµ′(U > 1)

Prµ′(U = 1)
.

Now, we recall that |Prµ′(E) − Prµ(E)| < 1
64 for any

event E by hypothesis. Therefore,

7

64
≤ qa,y ≤ 9

64
,

7

64
≤ ra,y ≤ 9

64
,

7

64
≤ πa,y ≤ 17

64
,

15

64
≤ ra0,y + ra1,y ≤

17

64
,

31

64
≤ πa0,y + πa1,y ≤

33

64
,

15

31
≤ S ≤ 17

33
.

Using these bounds and the expressions for pa,y derived
above, we see that

629

3069
< pa,y <

6497

7161
,

and hence pa,y ∈ [0, 1] for all a ∈ A and y ∈ Y .

Therefore, the policy τ ′(x) is well-defined, and, by construc-
tion, is budget-exhausting and therefore utility-maximizing
by Lemma D.4. It also satisfies counterfactual equalized
odds by construction. Since µ′ was arbitrary, it follows
that the set of distributions on K such that there exists a
Pareto efficient policy satisfying counterfactual equalized
odds contains an open ball, and hence is not shy.

F. Theorem 2 and Related Results
We first prove a variant of Theorem 2 for general, continuous
covariates X . Then, we extend and generalize Theorem 2
using the theory of finite Markov chains, offering a proof of
the theorem different from the sketch included in the main
text.

F.1. Extension to Continuous Covariates

Here we follow the proof sketch in the main text for The-
orem 2, which assumes a finite covariate-space X . In that
case, we start with a point x∗ with maximum decision prob-
ability d(x∗), and then assume, toward a contradiction, that
there exists a point with strictly lower decision probability.
The general case is more involved since it is not immedi-
ately clear that the maximum value of d(x) is achieved with
positive probability in X . We start with the lemma below
before proving the main result.

Lemma F.21. A decision policy d(x) satisfies path-specific
fairness with W = X if and only if any a′ ∈ A,

E[d(XΠ,A,a′) | X] = d(X).

Proof. First, suppose that d(x) satisfies path-specific fair-
ness. To show the result, we use the standard fact that for
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independent random variables X and U ,

E[f(X,U) | X] =

∫
f(X,u) dFU (u), (30)

where FU is the distribution of U . (For a proof of this fact
see, for example, Brozius, 2019)

Now, we have that

E[DΠ,A,a′ | XΠ,A,a′ ] = E[1UD≤d(XΠ,A,a′ ) | XΠ,A,a′ ]

=

∫ 1

0

1u≤d(XΠ,A,a′ ) du

= d(XΠ,A,a′),

where the first equality follows from the definition of
DΠ,A,a′ , and the second from Eq. (30), since the exogenous
variable UD ∼ UNIF(0, 1) is independent of the counterfac-
tual covariates XΠ,A,a′ . An analogous argument shows that
E[D | X] = d(X).

Finally, conditioning on X , we have

E[d(XΠ,A,a′) | X] = E[E[DΠ,A,a′ | XΠ,A,a′ ] | X]

= E[E[DΠ,A,a′ | XΠ,A,a′ , X] | X]

= E[DΠ,A,a′ | X]

= E[D | X]

= d(X),

where the second equality follows from the fact that
DΠ,A,a′ ⊥⊥ X | XΠ,A,a′ , the third from the law of iterated
expectations, and the fourth from the definition of path-
specific fairness.

Next, suppose that

E[d(XΠ,A,a′ | X] = d(X)

for all a′ ∈ A. Then, since W = X and X ⊥⊥ UD, using
Eq. (30), we have that for all a′ ∈ A,

E[DΠ,A,a′ | X] = E[E[1UD≤d(XΠ,A,a′ ) | XΠ,A,a′ , X] | X]

= E[E[d(XΠ,A,a′) | XΠ,A,a′ , X] | X]

= E[d(XΠ,A,a′) | X]

= d(X)

= E[d(X) | X]

= E[D | X].

This is exactly Eq. (5), and so the result follows.

We are now ready to prove a continuous variant of The-
orem 2. The technical hypotheses of the theorem ensure
that the conditional probability measures Pr(E | X) are
“sufficiently” mutually non-singular distributions on X with

respect to the distribution of X—for example, the condi-
tions ensure that the conditional distribution of XΠ,A,a | X
does not have atoms that X itself does not have, and vice
versa. For notational and conceptual simplicity, we only
consider the case of trivial ζ, i.e., where ζ(x) = ζ(x′) for
all x, x′ ∈ X .

Proposition F.8. Suppose that

1. For all a ∈ A and any event S satisfying Pr(X ∈ S |
A = a) > 0, we have, a.s.,

Pr(XΠ,A,a ∈ S ∨A = a | X) > 0.

2. For all a ∈ A and ϵ > 0, there exists δ > 0 such that
for any event S satisfying Pr(X ∈ S | A = a) < δ,
we have, a.s.,

Pr(XΠ,A,a ∈ S,A ̸= a | X) < ϵ.

Then, for W = X , any Π-fair policy d(x) is constant a.s.
(i.e., d(X) = p a.s. for some 0 ≤ p ≤ 1).

Proof. Let dmax = ∥d(x)∥∞, the essential supremum
of d. To establish the theorem statement, we show that
Pr(d(X) = dmax | A = a) = 1 for all a ∈ A. To do that,
we begin by showing that there exists some a ∈ A such that
Pr(d(X) = dmax | A = a) > 0.

Assume, toward a contradiction, that for all a ∈ A,

Pr(d(X) = dmax | A = a) = 0. (31)

Because A is finite, there must be some a0 ∈ A such that

Pr(dmax − d(X) < ϵ | A = a0) > 0 (32)

for all ϵ > 0.

Choose a1 ̸= a0. We show that for values of x such that
d(x) is close to dmax, the distribution of d(XΠ,A,a1

) | X =
x must be concentrated near dmax with high probability to
satisfy the definition of path-specific fairness, in Eq. (5).
But, under the assumption in Eq. (31), we also show that the
concentration occurs with low probability, by the continuity
hypothesis in the statement of the theorem, establishing the
contradiction.

Specifically, by Markov’s inequality, for any ρ > 0, a.s.,

Pr(dmax− d(XΠ,A,a1
) ≥ ρ | X)

≤ E[dmax − d(XΠ,A,a1
) | X]

ρ

=
dmax − d(X)

ρ
,
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where the final equality follows from Lemma F.21. Rear-
ranging, it follows that for any ρ > 0, a.s.,

Pr(dmax − d(XΠ,A,a1) < ρ | X)

≥ 1− dmax − d(X)

ρ
.

(33)

Now let S = {x ∈ X : dmax − d(x) < ρ}. By the second
hypothesis of the theorem, we can choose δ sufficiently
small that if

Pr(X ∈ S | A = a1) < δ

then, a.s.,

Pr(XΠ,A,a1
∈ S,A ̸= a1 | X) < 1

2 .

In other words, we can chose δ such that if

Pr(dmax − d(X) < ρ | A = a1) < δ

then, a.s.,

Pr(dmax − d(XΠ,A,a1) < ρ,A ̸= a1 | X) < 1
2

By Eq. (31), we can choose ϵ > 0 so small that

Pr(dmax − d(X) < ϵ | A = a1) < δ.

Then, we have that

Pr(dmax − d(XΠ,A,a1
) < ϵ,A ̸= a1 | X) < 1

2

a.s. Further, by the definition of the essential supremum and
a0, and the fact that a0 ̸= a1, we have that

Pr(dmax − d(X) < ϵ
2 , A ̸= a1) > 0.

Therefore, with positive probability, we have that

1− dmax − d(X)

ϵ

> 1−
ϵ
2

ϵ

=
1

2
> Pr(dmax − d(XΠ,A,a1

) < ϵ,A ̸= a1 | X).

This contradicts Eq. (33), and so it cannot be the case that
Pr(d(X) = dmax | A = a0) = 0, meaning Pr(d(X) =
dmax | A = a0) > 0.

Now, we show that Pr(d(X) = dmax | A = a1) = 1.
Suppose, toward a contradiction, that

Pr(d(X) < dmax | A = a1) > 0.

Then, by the first hypothesis, a.s.,

Pr(d(XΠ,A,a1
) < dmax ∨A = a1 | X) > 0

As a consequence,

dmax = E[d(X) | d(X) = dmax, A = a0]

= E[E[d(XΠ,A,a1
) | X] | d(X) = dmax, A = a0]

< E[E[dmax | X] | d(X) = dmax, A = a0]

= E[dmax | d(X) = dmax, A = a0]

= dmax,

where we can condition on the set {d(X) = dmax, A = a0}
since Pr(d(X) = dmax | A = a0) > 0; and the second
equality above follows from Lemma F.21. This establishes
the contradiction, and so Pr(d(X) = dmax | A = a1) = 1.

Finally, we extend this equality to all a ∈ A. Since,
Pr(d(X) ̸= dmax | A = a1) = 0, we have, by the sec-
ond hypothesis of the theorem, that, a.s.,

Pr(d(XΠ,A,a1
) ̸= dmax, A ̸= a1 | X) = 0.

Since, by definition, Pr(XΠ,A,a1
= X | A = a1) = 1, and

Pr(d(X) = dmax | A = a1) = 1, we can strengthen this to

Pr(d(XΠ,A,a1
) ̸= dmax | X) = 0.

Consequently, a.s.,

d(X) = E[d(XΠ,A,a) | X]

= E[dmax | X]

= dmax,

where the first equality follows from Lemma F.21, establish-
ing the result.

F.2. A Markov Chain Perspective

The theory of Markov chains illuminates—and allows
us to extend—the proof of Theorem 2. Suppose X =
{x1, . . . , xn}.20 For any a′ ∈ A, let Pa′ = [pa

′

i,j ] where
pa

′

i,j = Pr(XΠ,A,a′ = xj | X = xi). Then Pa′ is a stochas-
tic matrix.

To motivate the subsequent discussion, we first note that
this perspective conceptually simplifies some of our earlier
results. Lemma F.21 can be recast as stating that when
W = X , a policy d is Π-fair if and only if Pa′d = d—i.e.,
if and only if d is a 1-eigenvector of Pa′—for all a′ ∈ A.

The 1-eigenvectors of Markov chains have a particularly
simple structure, which we derive here for completeness.

20Because of the technical difficulties associated with character-
izing the long-run behavior of arbitrary infinite Markov chains, we
restrict our attention in this section to Markov chains with finite
state spaces.
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Lemma F.22. Let S1, . . . , Sm denote the recurrent classes
of a finite Markov chain with transition matrix P . If d is
a 1-eigenvector of P , then d takes a constant value pk on
each Sk, k = 1, . . . ,m, and

di =

m∑
k=1

 lim
n→∞

∑
j∈Sk

Pn
ij

 · pk. (34)

Remark 7. We note that limn→∞
∑

j∈Sk
Pn
i,j always exists

and is the probability that the Markov chain, beginning at
state i, is eventually absorbed by the recurrent class Sk.

Proof. Note that, possibly by reordering the states, we can
arrange that the stochastic matrix P is in canonical form,
i.e., that

P =

[
B
R′ Q

]
,

where Q is a sub-stochastic matrix, R is non-negative, and

B =


P1

P2

. . .
Pm


is a block-diagonal matrix with the stochastic matrix Pi

corresponding to the transition probabilities on the recurrent
set Si in the i-th position along the diagonal.

Now, consider a 1-eigenvector v = [v1 v2]
⊤ of P . We must

have that Pv = v, i.e., Bv1 = v1 and R′v1 + Qv2 = v2.
Therefore v1 is a 1-eigenvector of B. Since B is block
diagonal, and each diagonal element is a positive stochastic
matrix, it follows by the Perron-Frobenius theorem that the
1-eigenvectors of B are given by SPAN(1Si

)i=1,...,m, where
1Si

is the vector which is 1 at index j if j ∈ Si and is 0
otherwise.

Now, for v1 ∈ SPAN(1Si
)i=1,...,m, we must find v2 such

that R′v1 +Qv2 = v2.

Note that every finite Markov chain M can be canonically
associated with an absorbing Markov chain MABS where the
set of states of MABS is exactly the union of the transitive
states of M and the recurrent sets of M . (In essence, one
tracks which state of M the Markov chain is in until it is
absorbed by one of the recurrent sets, at which point the
entire recurrent set is treated as a single absorbent state.)
The transition matrix P ABS associated with MABS is given
by

P ABS =

[
I
R Q

]
where R = R′[1S1

. . . 1Sm
]. In particular, it follows that

v = [v1 v2]
⊤ is a 1-eigenvector of P if and only if [Tv1 v2]⊤

is a 1-eigenvector of P ABS, where T : 1Si 7→ ei.

Now, if v is a 1-eigenvector of P ABS, then it is a 1-
eigenvector of (P ABS)k for all k. Since Q is sub-stochastic,
the series

∑∞
k=0 Q

k converges to (I −Q)−1. Since

(P ABS)k =

[
I

(I +Q+ · · ·+Qk−1)R Qk

]
,

it follows that

lim
k→∞

(P ABS)k =

[
I

(I −Q)−1R 0

]
.

Therefore, if v = [v1 v2]
⊤ is a 1-eigenvector of P ABS, we

must have that (I −Q)−1Rv1 = v2. By Theorem 3.3.7 in
Kemeny & Snell (1976), the (i, k) entry of (I −Q)−1R is
exactly the probability that, conditional on X0 = xi, the
Markov chain is eventually absorbed by the recurrent set
Sk. This is, in turn, by the Chapman-Kolmogorov equations
and the definition of Sk, equal to limn→∞

∑
j∈Sk

Pn
i,j , and

therefore the result follows.

We arrive at the following simple necessary condition on
Π-fair policies.

Corollary F.6. SupposeX is finite, and define the stochastic
matrix P = 1

|A|
∑

a′∈A Pa′ . If d(x) is a Π-fair policy then
it is constant on the recurrent classes of P .

Proof. By Lemma F.21, d is Π-fair if and only if Pa′d = d
for all a′ ∈ A. Therefore,

1

|A|
∑
a′∈A

Pa′d =
1

|A|
∑
a′∈A

d = d, (35)

and so d is a 1-eigenvector of P . Therefore it is constant on
the recurrent classes of P by Lemma F.22.

We note that Theorem 2 follows immediately from this.

Proof of Theorem 2. Note that 1
|A|
∑

a∈A Pa decomposes
into a block diagonal stochastic matrix, where each block
corresponds to a single stratum of ζ and is irreducible. Con-
sequently, each stratum forms a recurrent class, and the
result follows.

G. Proof of Proposition 2
To prove the proposition, we must characterize the condi-
tional tail risks of the beta distribution. Note that in the
main text, we parameterize beta distributions in terms of
their mean µ and sample size v; here, for mathematical sim-
plicity, we parameterize them in terms of successes, α, and
failures, β, where µ = α

α+β and v = α+ β.

Lemma G.23. Suppose Zi ∼ BETA(αi, βi) for i = 0, 1,
and that α0 > α1 > 1, 1 < β0 < β1. Then, for all
t ∈ (0, 1], E[Z1 | Z1 < t] < E[Z0 | Z0 < t].
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Proof. Let Z(α, β) ∼ BETA(α, β). Then,

E[Z(α, β) | Z(α, β) < t] =

∫ t

0
x · x

α−1(1−x)β−1

B(α,β) dx∫ t

0
xα−1(1−x)β−1

B(α,β) dx

=

∫ t

0
xα(1− x)β−1 dx∫ t

0
xα−1(1− x)β−1 dx

.

Since α > 1, we may take the partial derivative with respect
to α by differentiating under the integral sign, which yields
that ∂

∂αE[Z(α, β) | Z(α, β) < t] equals

α · I(t, α, β)2 − [α− 1] · I(t, α+ 1, β) · I(t, α− 1, β)

I(t, α, β)2
,

where I(x, α, β) =
∫ t

0
xα−1(1 − x)β−1 dx. Rearranging

gives that this is greater than zero when

0 < α · I(t, α+ 1, β) ·
∫ t

0

(xα−2 − xα−1)(1− x)β dx

+ α · I(t, α, β) ·
∫ t

0

(xα−1 − xα)(1− x)β dx

+ I(t, α+ 1, β) · I(t, α− 1, β).

Since all of the integrands are positive, ∂
∂αE[Z(α, β) |

Z(α, β) < t] > 0.

A virtually identical argument shows that ∂
∂βE[Z(α, β) |

Z(α, β) < t] < 0. Therefore, the result follows.

We use this lemma to prove a modest generalization of
Prop. 2.

Lemma G.24. Suppose A = {a0, a1}, and consider the
family U of utility functions of the form

u(x) = r(x) + λ · 1α(x)=a1
,

indexed by λ ≥ 0, where r(x) = E[Y (1) | X = x]. Sup-
pose the conditional distributions of r(X) given A are beta
distributed, i.e.,

D(r(X) | A = a) = BETA(αa, βa),

with 1 < αa1 < αa0 and 1 < βa0 < βa1 . Then any policy
satisfying counterfactual predictive parity is strongly Pareto
dominated.

Proof. Suppose there were a Pareto efficient policy satis-
fying counterfactual predictive parity. Let λ = 0. Then,
by Prop. 1, we may without loss of generality assume that
there exist thresholds ta0

, ta1
and a constant p such that a

threshold policy τ(x) witnessing Pareto efficiency is given
by

τ(x) =

{
1 r(x) > tα(x),

0 r(x) < tα(x).

(Note that by our distributional assumption, Pr(u(x) =
t) = 0 for all t ∈ [0, 1].) Since λ ≥ 0, we must have that
ta0 ≥ ta1 . Since b < 1, 0 < ta0 . Therefore,

E[Y (1) | A = a0, D = 0]

= E[r(X) | A = a0, u(X) < ta0
]

≥ E[r(X) | A = a0, u(X) < ta1
]

> E[r(X) | A = a1, u(X) < ta1
]

= E[Y (1) | A = a1, D = 0],

where the first equality follows by the law of iterated ex-
pectation, the second from the fact that ta1

≤ ta0
, the

third from our distributional assumption and Lemma G.23,
and the final again from the law of iterated expectation.
However, since counterfactual predictive parity is satisfied,
E[Y (1) | A = a0, D = 0] = E[Y (1) | A = a1, D = 0],
which is a contradiction. Therefore, no such threshold policy
exists.

After accounting for the difference in parameterization,
Prop. 2 follows as a corollary.

Proof of Prop. 2. Note that αa = µa · va > v · 1v = 1 and
βa = v − αa = v · (1 − µa) > v · (1 − 1

v ) > 2 − 1 = 1.
Moreover, since µa0

> µa1
, αa0

= v ·µa0
> v ·µa1

= αa1

and βa0
= v·(1−µa0

) < v·(1−µa1
) = βa1

. Therefore 1 <
αa0

< αa1
and 1 < αa1

< αa0
, and so, by Lemma G.24,

the proposition follows.


