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ABSTRACT
On a variety of complex decision-making tasks, from doctors pre-

scribing treatment to judges setting bail, machine learning algo-

rithms have been shown to outperform expert human judgments.

One complication, however, is that it is often difficult to anticipate

the effects of algorithmic policies prior to deployment, as one gen-

erally cannot use historical data to directly observe what would

have happened had the actions recommended by the algorithm

been taken. A common strategy is to model potential outcomes

for alternative decisions assuming that there are no unmeasured

confounders (i.e., to assume ignorability). But if this ignorability
assumption is violated, the predicted and actual effects of an al-

gorithmic policy can diverge sharply. In this paper we present a

flexible Bayesian approach to gauge the sensitivity of predicted

policy outcomes to unmeasured confounders. In particular, and

in contrast to past work, our modeling framework easily enables

confounders to vary with the observed covariates. We demonstrate

the efficacy of our method on a large dataset of judicial actions, in

which one must decide whether defendants awaiting trial should

be required to pay bail or can be released without payment.

CCS CONCEPTS
• Applied computing→ Sociology; • Computing methodolo-
gies → Machine learning.
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1 INTRODUCTION
Machine learning algorithms are increasingly used by employ-

ers, judges, lenders, and other experts to guide high-stakes de-

cisions [2, 3, 5, 6, 22]. These algorithms, for example, can be used to

help determine which job candidates are interviewed, which defen-

dants are required to pay bail, and which loan applicants are granted

credit. When determining whether to implement a proposed policy,

it is important to anticipate its likely effects using only historical

data, as ex-post evaluation may be expensive or otherwise imprac-

tical. This general problem is known as offline policy evaluation.

One approach to this problem is to first assume that treatment as-

signment is ignorable given the observed covariates, after which a

variety of modeling techniques are theoretically justified, including

regression, matching, and doubly robust estimation [1, 10, 23, 24].

As the assumption of ignorability is often unrealistic in practice,

sensitivity analysis methods seek to gauge the effects of unmea-

sured confounding on predicted outcomes. The literature on sensi-

tivity analysis dates back at least to the work of Cornfield et al. [8]

on the link between smoking and lung cancer. In a seminal paper,

Rosenbaum and Rubin [21] proposed a framework for sensitivity

analysis in which a binary unmeasured confounder affects both a

binary response variable and a binary treatment decision. Some

extensions of the Rosenbaum and Rubin approach to sensitivity

analysis include allowing for non-binary response variables, and in-

corporating machine learning methods into the estimation process

[4, 9, 15].

A complementary line of work extends classical sensitivity anal-

ysis by taking a Bayesian perspective and averaging, rather than

sweeping, over values of the sensitivity parameters [19, 20]. In this

setup, even a weakly informative prior distribution over the sen-

sitivity parameters can exclude estimates that are not supported

by the data. Several authors have recently extended traditional

methods for sensitivity analysis to offline policy evaluation [16, 17],

though we do not know of any existing Bayesian approaches to the

policy evaluation problem.

In this paper we develop a flexible Bayesian method to evaluate

decision algorithms in the presence of unmeasured confounding.

In contrast to most past work on sensitivity analysis, our approach

conveniently accommodates latent confounding that varies with

the observed covariates. This flexibility, coupledwith a full Bayesian

specification, helps to automatically exclude values of the latent

variables that are not supported by the data and model of confound-

ing.

To illustrate our method, we consider judicial bail decisions,

starting with a detailed dataset of over 165,000 judgments in a large,
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urban jurisdiction. Based on this information, we create realistic

synthetic datasets for which potential outcomes and selection mech-

anisms are, by construction, fully known. We apply our method to

these synthetic datasets, selectively masking potential outcomes

and the data-generation process to mimic real-world applications.

Under a variety of conditions, we find that our approach accurately

recovers true policy effects despite the presence of unmeasured con-

founding. In these simulations, our approach outperforms classical,

non-Bayesian sensitivity analysis techniques that have recently

been adapted to the algorithmic decision-making context [16, 21].

Further, when applied to the special case of estimating average

treatment effects, our general method performs on par with exist-

ing, state-of-the-art approaches that are tailored to that specific

problem.

2 METHODOLOGY
A common goal of causal inference is to estimate the average effect

of a binary treatment T ∈ {0, 1} on a response Y ∈ R. That is, one
often seeks to estimate E[Y (1) −Y (0)], where Y (0) and Y (1) denote
the potential outcomes under the two possible treatment values.

Here we consider a generalization of this problem that arises in

many applied settings. Namely, given a policy π : Rm 7→ {0, 1}

that assigns treatment based on individual characteristics X ∈ Rm ,

we seek to estimate the average response V π = E[Y (π (X ))]. In our

judicial bail application (described in detail in following sections), π
is an algorithmic rule that determines which defendants are released

on their own recognizance (RoR) and which are required to pay

bail, Y ∈ {0, 1} indicates whether a defendant appears at trial, X is

a vector of observed covariates, and V π
is the expected proportion

of defendants who fail to appear in court when the rule is followed.

2.1 Policy evaluation without unmeasured
confounding

To motivate the standard approach for estimating V π
, we decom-

pose it into the sum of two terms:

V π =E[Y (T ) | π (X ) = T ] · Pr[π (X ) = T ]

+ E[Y (1 −T ) | π (X ) , T ] · Pr[π (X ) , T ].

The proposed and observed policies are the same for the first term

but differ for the second term. Thus estimating the first term is

straightforward, since we directly observe the outcomes for this

group, Y obs = Y (T ). The key statistical difficulty is estimating

the second term, for which we must impute the missing potential

outcomes, Ymis = Y (1−T ). That is, in these cases we must estimate

what would have happened had the proposed action been followed,

rather than the observed action. This challenge is known as the

fundamental problem of causal inference [14].

To estimateV π
, it is common to start with a sample of historical

data {(xi , ti ,yi (ti ))}
n
i=1 on individual covariates, treatment deci-

sions, and observed outcomes. We can then estimate V π
via:

V̂ π =
1

n


∑

π (xi )=ti

yobsi +
∑

π (xi ),ti

ŷmis

i

 , (1)

where yobsi is the observed outcome for individual i when the pro-

posed and observed policies agree. A simple approach to estimating

the unobserved potential outcomes ŷmis

i in the second term is to di-

rectly model the outcomes conditional on treatment and observed

covariates—a strategy sometimes referred to as response surface
modeling [13].

This direct modeling approach implicitly assumes that the treat-

ment is ignorable given the observed covariates (i.e., that there is

no unmeasured confounding). Formally, ignorability means that

Y (0),Y (1) ⊥⊥ T | X . (2)

In other words, conditional on the observed covariates, those who

receive treatment are similar to those who do not. In many realistic

situations, ignorability is a strong assumption. The main contribu-

tion of this paper is a Bayesian approach to assessing the sensitivity

of estimated policy outcomesV π
to violations of ignorability, which

we present next.

2.2 Policy evaluation with unmeasured
confounding

When ignorability does not hold, the resulting estimates of V π
can

be strongly biased. To address this issue, the sensitivity literature

typically starts by assuming that there is an unmeasured confounder

U ∈ {0, 1} (or, more generally,U ∈ R) for each individual such that

ignorability holds given both X andU :

Y (0),Y (1) ⊥⊥ T | X ,U . (3)

One then generally imposes additional structural assumptions on

the form ofU and its relationship to decisions and outcomes. We

follow this basic template to obtain sensitivity estimates for policy

outcomes.

At a high level, we model the observed data {(xi , ti ,yi (ti ))}
n
i=1

as draws from parametric distributions depending on the measured

covariates xi and the unmeasured, latent covariates ui :

yi (0) ∼ f (xi ,ui ;α)

yi (1) ∼ д(xi ,ui ; β)

ti ∼ h(xi ,ui ;γ )

yi = yi (ti )

where α , β , γ , andui are latent parameters with weakly informative

priors. The inferred joint posterior distribution on these parame-

ters then yields estimates of yi (0) and yi (1) for each individual i .
Finally, the posterior estimates of the potential outcomes yield a

posterior estimate of V π
via Eq. (1) that accounts for unmeasured

confounding.

Our strategy, while conceptually straightforward, differs in three

important ways from classical sensitivity methods. First, we directly

model the treatment and potential outcomes, allowing for flexibil-

ity in the functional forms of f , д and h. Second, our Bayesian
approach automatically excludes values of the latent variables that

are not supported by the data [19]. In contrast, previous methods

generally require more extensive parameter tuning to obtain rea-

sonable estimates. Finally, our focus is on the more general problem

of estimating policy outcomes rather than the average treatment

effects considered in past work.

We now describe the specific forms of f , д, and h that we use

throughout our analysis. First, we reduce the dimensionality of

the observed covariate vectors x down to three key quantities:



µ0(x) = E[Y (0) | X = x], the conditional average response if T = 0;

µ1(x) = E[Y (1) | X = x], the conditional average response if T = 1;

and e(x) = Pr(T = 1 | X = x), the propensity score. The first two

quantities, µ0(x) and µ1(x), depend on potentially unobserved out-

comes Y (0) and Y (1), and so typically cannot be perfectly estimated

from available data—indeed, accurately estimating these terms is

our ultimate goal. Thus, as a first step, we generate approximations

µ̂0(x) and µ̂1(x) by assuming ignorability and fitting standard pre-

diction models, like regularized regression, to subsets of the data

with T = 0 and T = 1, respectively.

To support complex relationships between the predictors and

outcomes, we divide the data into K approximately equally sized

groups, ranking and binning by the estimated outcome µ̂0. As
Franks et al. [11] show, this flexible model form also plays an impor-

tant theoretical role, helping to avoid issues of identifiability that are

inherently at odds with the exercise of sensitivity analysis. Denot-

ing the group membership of observation i by k[i] ∈ {1, 2, . . . ,K},

and a Bernoulli distribution with mean p as B(p), we model the

observed data as follows:

yi (0) ∼ B

(
logit

−1
(
α
0,k[i] + α µ̂0,k [i] µ̂0(xi ) + αu ,k [i]ui

) )
yi (1) ∼ B

(
logit

−1
(
β
0,k [i] + β µ̂1,k [i] µ̂1(xi ) + βu ,k [i]ui )

)
ti ∼ B

(
logit

−1(γ
0,k [i] + γê ,k [i]ê(xi ) + γu ,k [i]ui )

)
yi = yi (ti ).

In each of the first three equations above, variables are modeled as

draws from a Bernoulli distribution whose mean depends on both

the reduced covariates—µ̂0(x), µ̂1(x), and ê(x)—and the unmeasured

confounderu.1 In the judicial context, for example, one can imagine

that ui corresponds to unobserved risk of failing to appear, with

judges more likely to demand bail from riskier defendants.

Finally, to complete the Bayesian model specification, we must

describe the prior distribution on the parameters (additional detail is

provided in the Appendix). On each of the unmeasured confounders

ui , we set a N(0, 1) prior. On the coefficients α , β , and γ we use a

random-walk prior; intuitively, these priors ensure that adjacent

groups have similar coefficient values, mitigating the dependence

of results on the exact number of groups K .
By definition, it is impossible to infer the degree of unmeasured

confounding from the observed data alone. As such, most methods

for sensitivity analysis involve one or more parameters that allow

one to explicitly set the degree of confounding, which may, for

example, be informed by domain knowledge. However, in our case,

the necessary side information enters implicitly, from the structural

form of our model of confounding, especially the choice of K dis-

cussed above. By positing smoothness and accordingly restricting

the number of groups—which is reasonable in many applications—

one can leverage the functional form of the model to avoid having

to explicitly set the degree of confounding. This general approach

is a valuable complement to the traditional perspective, but there

is no free lunch: if the model of confounding is unreasonable for a

particular application, the resulting sensitivity bounds will suffer.

Below we discuss a strategy for appropriately setting the model

parameters via simulation.

1
Althoughwe describe our method for binary potential outcomes, the general approach

can accommodate real-valued outcomes as well.

3 AN APPLICATION TO JUDICIAL DECISION
MAKING

To demonstrate our general approach to offline policy evaluation,

we now consider in detail the case of algorithms designed to aid ju-

dicial decisions [12, 16, 18]. In the U.S. court system, pretrial release

determinations are among the most common and consequential de-

cisions for criminal defendants. After arrest, a defendant is usually

arraigned in court, where a prosecutor presents a written list of

charges. If the case proceeds to trial, a judge must decide whether

the defendant should be released on his or her own recognizance

(RoR) or subject to money bail, where release is conditional on pro-

viding collateral meant to ensure appearance at trial. Defendants

who are not RoR’d and who cannot post bail themselves may await

trial in jail or pay a bail bondsman to post bail on their behalf.

Judges must therefore balance the burdens of bail on a defendant

and society against the risk that the defendant may fail to appear

(FTA) for trial.
2

Here we consider algorithmic policies for assisting these judicial

decisions, recommending either RoR or bail based on recorded char-

acteristics of a defendant and case. The policy evaluation problem

is to estimate, based only on historical data, the proportion of de-

fendants who would fail to appear if algorithmic recommendations

were followed. This is statistically challenging because one does not

always observe what would have occurred had the algorithmic pol-

icy been followed. In particular, if the policy recommends releasing

a defendant who was in reality detained, or recommends detaining

a defendant who was in reality released, the relevant counterfac-

tual is not observed. Further, since judges may—and likely do—base

their decisions in part on information that is not recorded in the

data, direct outcome models ignoring unmeasured confounding

will likely be biased. We thus allow for a real-valued unobserved

covariateu that affects both a judge’s decision (RoR or bail) and also

the outcome (FTA or not) conditional on that decision. Our goal is

to assess the sensitivity of flight risk estimates to such unmeasured

confounding.

3.1 Policy construction
Our analysis is based on 165,000 adult cases involving nonviolent

offenses charged by a large urban prosecutor’s office and arraigned

in criminal court between 2010 and 2015. These cases do not include

instances where defendants accepted a plea deal at arraignment,

where no pretrial release decision is necessary. For each case, we

have 49 features describing characteristics of the current charges

(e.g., theft, gun-related), and 15 features describing characteristics

of the defendant (e.g., gender, age, prior arrests). We also observe

whether the defendant was RoR’d, and whether the defendant failed

to appear at any of his or her subsequent court dates. Applying

notation introduced in the previous section, xi refers to a vector of

all observed characteristics of the i-th defendant, ti = 1 if bail was

set, and yi = 1 if the defendant failed to appear at court.

To carry out our analysis, we first randomly select 10,000 cases

from the full dataset which we set aside as our final test data. The

remaining data are split into two folds of approximately equal size.

2
In many jurisdictions, judges may also consider the risk that a defendant will commit

a new crime if released when deciding whether or not to set bail, but not in the

jurisdiction we consider.



We begin by constructing a family of algorithmic decision rules.

On the first training fold, we fit an L1-regularized (lasso) logistic

regression model to estimate the probability of FTA given release,

µ̂π
0
(xi ). That is, we fit a logistic regression with the left-hand side

indicating whether a defendant failed to appear at any court dates,

and the right-hand side comprised of all available covariates for the

subset of defendants that the judge released. We use the superscript

π to indicate that these estimates are computed on the first fold

of data, and are used exclusively to define policies, not to evaluate

them.With these estimates in hand, we construct a family of policies

{πs }, indexed by a risk threshold s for releasing individuals:

πs (xi ) =

{
1 if µ̂π

0
(xi ) > s

0 if µ̂π
0
(xi ) ≤ s .

These policies, which are based on a ranking of defendants by risk,

are similar to pretrial algorithms used in practice [7].

Given the family of policies {πs } defined above, we next estimate

the proportion of defendants who would fail to appear under each

policy, accounting for unmeasured confounding. To do so, on the

second training fold, we fit three L1-regularized logistic regression

models to estimate each individual’s likelihood of failing to appear

if RoR’d or required to pay bail—µ̂0(xi ) and µ̂1(xi ), respectively—as
well as each individual’s likelihood of having bail set, ê(xi ).

Finally, on the test fold consisting of 10,000 cases, we fit our

Bayesian sensitivity model using the estimated quantities µ̂0(xi ),
µ̂1(xi ), and ê(xi ). But, to do so, we must first select appropriate

parameters for our model of confounding, which we describe next.

3.2 Calibrating the model via simulation
As mentioned above, information about unmeasured confounding

enters through the structural form of the model. In particular, the

amount of unmeasured confounding is related to the number of

observations per bin, n/K , with fewer observations per bin corre-

sponding to more unmeasured confounding. We now describe how

to calibrate our model of unmeasured confounding using synthetic

datasets, before applying our method to real data.

We begin by creating a synthetic version of our original judi-

cial dataset of judicial decisions where both potential outcomes for

each defendant—yi (0) and yi (1)—are known. We do this by first

estimating µ̂0(xi ), µ̂1(xi ), and ê(xi ) using L
1
-regularized logistic re-

gression, as above. Then, for each individual in the original dataset,

we create synthetic potential outcomes and treatment assignments

via independent Bernoulli draws based on these estimated prob-

abilities. We denote the resulting synthetic (uncensored) dataset

by Ω = {(xi , t
′
i ,y

′
i (0),y

′
i (1))}. Because both potential outcomes are

known, we can exactly calculate V π
for any policy π applied to Ω.

Moreover, our synthetic dataset satisfies ignorability by construc-

tion.

We next censor Ω in two ways. First, we restrict the observed

covariates to a subset x ′i . Specifically, we consider three sets of

restricted covariates: age; age and gender; and age, gender, and prior

number of missed court appearances. Second, for each individual we

remove the potential outcome for the action not taken, keeping only

y′i (t
′
i ). Thus, for each of our three choices of x ′i , we have a dataset

of the form Ω
′

= {(x ′i , t
′
i ,y

′
i (t

′
i ))}. The covariates not included in

x ′i correspond to unmeasured confounding. Starting from these
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Figure 1: Sensitivity estimates on three synthetic datasets. In

each panel, datasets are restricted to contain only a subset

of covariates: age (left); age and gender (center); age, gender,

and prior FTAs (right). The blue lines show estimates based

on direct outcomemodels ignoring unmeasured confounding,

and the gray bands represent 50% and 95% credible intervals

based on our sensitivity analysis. The red lines show the true

policy outcomes.
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Figure 2: The average width of 95% credible intervals for a

range of n/K observations per group.

three synthetic datasets, we carry out the policy construction and

sensitivity analysis procedure described above.

The results of our simulation study are shown in Figure 1, with

each panel corresponding to a different choice of x ′i and thus a

different degree of unmeasured confounding. In all cases, we set

n/K = 1000 (i.e., 1,000 observations per bin). The blue lines show

estimates based on direct outcome modeling, ignoring unmeasured

confounding, and the gray bands represent 50% and 95% credible

intervals based on our sensitivity analysis. Importantly, because

these results are derived from synthetic datasets, we can also com-

pute the true policy outcomes, which are indicated in the plot by

the red lines.

Across the three levels of unmeasured confounding that we con-

sider, our sensitivity bands cover the ground truth line. Moreover,

the bands accurately reflect the true level of confounding, with

wider bands when x ′i consists only of age (i.e., there is extreme con-

founding), and narrower bands when x ′i is comprised of age, gender,

and prior number of missed court appearances (the confounding

is less severe). Thus, based on this simulation, setting n/K = 1000

appears reasonable to account for the true level of unmeasured

confounding in the synthetic datasets.

To illustrate the effect of our parameter choice on the results,

we measure the average width of the 95% credible intervals in our

synthetic datasets over a wide range of n/K (i.e., observations per

bin). The results are presented in Figure 2, which is based on a
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Figure 3: Sensitivity estimates for flight risk under a family

of policies πs . The blue line denotes estimates assuming no

unmeasured confounding. The gray bands indicate 95% and

50% credible intervals under our model of unmeasured con-

founding.

dataset of 1000 observations. As the number of observations per

bin increases—as a result of lowering the number of groups K—the
credible interval widths decrease. Importantly, the credible intervals

for all the settings we consider still cover the ground truth in the

synthetic datasets, as in Figure 1.

3.3 Results on the observed data
Based on the above calibration exercise, we fit our Bayesian sensi-

tivity model on the real data using n/K = 1000 observations per bin

(i.e, with K = 10 bins on the held-out set of 10,000 data points). We

note that we found qualitatively similar results when we repeated

our analysis for K = 5 and K = 100 bins.

The results of our analysis are plotted in Figure 3. The blue

dashed line shows, for each policy πs , the proportion RoR’d and the

estimated proportion that FTA under the policy, V̂ πs
, estimated as-

suming no unobserved confounding. For reference, the black point

shows the status quo: judges in our dataset release 69% of defen-

dants, resulting in an overall FTA rate of 13%. The light and dark

gray bands show, respectively, the 95% and 50% credible intervals

that result from the sensitivity analysis procedure under our model

of unobserved confounding.

Figure 3 illustrates three key points. First, for policies that RoR al-

most all defendants (toward the right-hand side of the plot), the blue

line lies below our sensitivity bands, in line with expectations. If

there is unmeasured confounding, we would expect those who were

in reality detained to be riskier than they seem from the observed

data alone; as a result, the direct outcome model underestimates

the proportion of defendants that would fail to appear if all (or

almost all) such defendants are RoR’d. Conversely, for policies that

recommend bail for almost all defendants (toward the left-hand

side of the plot), the blue line lies above the sensitivity bands, as

we would expect, because those who were in reality released are

likely less risky than they appear from the observed data alone.

Second, as the policies move further from the status quo, toward

the left- and right-hand extremes of the plot, the sensitivity bands

grow in width, indicating greater uncertainty. This pattern reflects
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Figure 4: Sensitivity estimates based on the method of Jung

et al. [16], applied to three synthetic datasets. The gray bands

indicate minimum and maximum policy estimates for two

parameter regimeswhere the unobserved confounder can both

double the odds of bail and of failing to appear at trial (dark

bands), or triple these odds (light bands). The blue lines show

estimates from direct outcome models ignoring unmeasured

confounding, and the red lines indicate ground truth out-

comes.

the fact that the data provide less direct evidence of flight risk as

policies diverge from observations, heightening the potential im-

pact of unmeasured confounding. Finally, even after accounting for

unmeasured confounding, there are algorithmic policies that do

substantially better than the status quo, in the sense that they RoR

more defendants and simultaneously achieve a lower overall FTA

rate.

4 COMPARISONWITH ALTERNATIVE
METHODS

Sensitivity analysis for offline policy evaluation is relatively new

[16, 17]. There are, however, several methods for assessing the sen-

sitivity of average treatment effects to unmeasured confounding,

which is a specific case of policy evaluation. Here we compare our

approach to Jung et al.’s sensitivity method for offline policy evalua-

tion, as well as to two recent Bayesian sensitivity methods designed

for average treatment effects [9, 19]. For space, we omit the details

of these methods, but note that we implement the two sensitivity

analysis procedures exactly as they were originally described.

Figure 4 shows the results of the Jung et al. procedure applied

to the three synthetic datasets described above. In particular, we

compute the minimum and maximum policy estimates obtained by

sweeping over two parameter regimes suggested in their paper. In

the first regime (dark bands), we allow the unobserved confounder

to double the odds of bail and the odds of failing to appear at trial,

both if RoR’d or required to pay bail. We also consider a more ex-

treme situation (lighter bands), where the unobserved confounding

can increase the odds of being detained up to three times, and also

triple the odds a defendant fails to appear. In each scenario, the red

lines indicate the true outcomes of each policy, computed from the

uncensored synthetic dataset, the blue lines show estimates based

on direct outcome models ignoring unmeasured confounding, and

the gray bands indicate the minimum and maximum values of each

policy over all parameter settings in the corresponding regime.

In contrast to our own sensitivity analysis results, the sensitivity

bands in Figure 4 often fail to capture the ground truth policy esti-

mates. Further, and more importantly, the sensitivity bands do not
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Figure 5: Estimates of average treatment effects for three syn-

thetic datasets with differing levels of unmeasured confound-

ing, as estimated by various methods: our own approach, la-

beled BSA-P; the method of McCandless and Gustafson [19],

labeled BSA; and the method of Dorie et al. [9], labeled Treat-

Sens, for two different prior distributions. The thick and thin

lines represent 50%and 95% credible intervals, and the redhor-

izontal line marks the true effect.

appropriately adapt to the differing levels of unmeasured confound-

ing across datasets, as indicated by their relatively constant width

across settings. As a result, one must manually tune the sensitivity

parameters for each dataset to achieve satisfactory performance.

While not impossible—and indeed such calibration is the norm in

classical sensitivity methods—the need for such manual adjustment

is a significant limitation of non-Bayesian approaches to sensitivity

analysis.

Since policy evaluation is a generalization of estimating aver-

age treatment effects, we next compare our approach to methods

designed for that specific problem. In our judicial application, the

average treatment effect is the difference in the proportion of defen-

dants who fail to appear at court when all are required to pay bail

versus all being RoR’d. We specifically compare our approach to

two recently proposed methods for Bayesian sensitivity analysis of

average treatment effects: the method of McCandless and Gustafson

[19], which we refer to as BSA, and the TreatSens method of Dorie

et al. [9]. Figure 5 shows the results of estimating average treatment

effects on our three synthetic datasets, where the true answer is indi-

cated by the dashed red line, and our approach is labeled BSA-P. For

TreatSens, since we can specify different priors on the unobserved

u, we compute results with a standard normal prior—as used in our

own method—and with uniform priors, as suggested by Dorie et al.

The thick and thin lines show the 50% and 95% credible intervals.

In all three synthetic datasets, our approach is competitive with,

and arguably even better than, the two methods we compare to. In

particular, whereas the true answer is at the periphery of the 95%

credible intervals generated by TreatSens, the ground truth lies

near the posterior median of our approach. Further, our credible

intervals are substantially narrower than those resulting from BSA,

indicating that our method simultaneously achieves accuracy and

precision.

5 DISCUSSION
We have addressed the problem of offline policy evaluation by cou-

pling classical statistical ideas on sensitivity analysis with modern

methods of machine learning and large-scale Bayesian inference.

The result is a conceptually simple yet powerful technique for eval-

uating algorithmic decision rules.

By definition, it is impossible to precisely quantify unmeasured
confounding, and so all methods of sensitivity analysis require as-

sumptions that are inherently untestable [11]. Traditional methods

handle this situation by requiring practitioners to specify parame-

ters describing the structure and scale of the assumed confounding,

informed, for example, by domain expertise. In our case, the nec-

essary side information enters through the assumed form of the

data-generating process. By adopting an expressive model form

that we calibrate through simulation, our approach balances the

need to provide at least some information about the structure of

the potential confounding with the impossibility of specifying it

exactly. This middle ground appears to work well in practice, but it

is useful to remember the conceptual underpinnings of our strategy

when applying it to new domains.

Over the last two decades, sophisticated methods of machine

learning have emerged and gained widespread adoption. More re-

cently, these methods have been applied to traditional problems of

causal inference and their modern incarnations, like offline policy

evaluation. Prediction and causal inference are two sides of the

same coin, but the links between the two are still under-developed.

Here we have bridged one such gap by porting ideas from classical

sensitivity analysis to algorithmic decision making. Looking for-

ward, we hope that sensitivity analysis is more tightly integrated

into machine-learning pipelines and, more generally, that our work

spurs further connections between methods of causal inference and

prediction.
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APPENDIX
In the main text, we described the likelihood function for our

Bayesian model of unmeasured confounding. Here we complete

the model specification by describing the prior distribution on the

parameters.

As mentioned in the main text, we set a N(0, 1) prior on each of

the unmeasured confounders ui . On the coefficients α , β , and γ we

use a random-walk prior. Formally, the random-walk prior on α0 is
given by

α0,1 ∼ N(0, 1)

α0, j ∼ N(α0, j−1, τ
2

α0

) for j ∈ {2, 3, . . . ,K}

τα0
∼ N+(0,σ

2

τ ),

where N+(0,σ
2

τ ) indicates the half-normal distribution with stan-

dard deviation στ . We analogously set priors for the parameters

α µ̂0 , β0, β µ̂1 , γ0, and γê .
For the coefficients on the unobserved confounders ui , we set

random-walk priors with an additional constraint to ensure posi-

tivity, so that Pr(T = 1), Pr(Y (0) = 1), and Pr(Y (1) = 1) all increase

with ui . This constraint, while not strictly necessary, facilitates

estimation of the posterior distribution. Formally, for αu we have

αu ,1 ∼ N+(0, 1)

αu , j ∼ N+(αu , j−1, τ
2

αu ) for j ∈ {2, 3, . . . ,K}

ταu ∼ N+(0,σ
2

τ ).

We similarly set sign-constrained random-walk priors on βu and

γu . For the main results in this paper, we set values of στ = 1 and

K = 10. However, the results are not substantially affected by the

choice of K or the prior distribution (parameterized by στ ).

http://arxiv.org/abs/stat.AP/1702.04690
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